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Multiplication is a fundamental operation in many applications, andmultipliers are widely adopted in various
circuits. However, optimizing multipliers is challenging due to the extensive design space. In this paper, we
propose a multiplier design optimization framework based on reinforcement learning. We utilize matrix and
tensor representations for the compressor tree of a multiplier, enabling seamless integration of convolutional
neural networks as the agent network. The agent optimizes the multiplier structure using a Pareto-driven
reward customized to balance area and delay. Furthermore, we enhance the original framework with paral-
lel reinforcement learning and design space pruning techniques and extend its capability to optimize fused
multiply-accumulate (MAC) designs. Experiments conducted on different bit widths of multipliers demon-
strate that multipliers produced by our approach outperform all baseline designs in terms of area, power,
and delay. The performance gain is further validated by comparing the area, power, and delay of processing
element arrays using multipliers from our approach and baseline approaches.
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1 INTRODUCTION
In the era of rapid advancements in neural networks and streamingmedia applications, the demand
for computational power has intensified. Notably, the multiply-accumulate (MAC) computation
can constitute over 99% of operations in standard deep neural networks. At the hardware layer,
multipliers and MAC circuits are integral to the architecture of compute-intensive circuits, signif-
icantly impacting the system performance, energy consumption, spatial requirements, and design
complexities. Therefore, swiftly designing multipliers and MACs that meet metric specifications
such as power, performance, and area (PPA) becomes imperative.

Multiplier design optimization at the architecture level is non-trivial due to the huge design
space. For an 8-bit multiplier, the design space size is on the order of 109, while for a 16-bit multi-
plier, it reaches approximately 1023. This exponential scaling highlights the significant complexity
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involved in effectively exploring and optimizing designs as bit-width increases. The multiplier
design is fundamentally segmented into three primary components: a partial product generator
(PPG), a compressor tree (CT), and a carry propagation adder (CPA). Among these, the optimiza-
tion of the Compressor Tree (CT) is pivotal, as it significantly influences the PPA of a multiplier.
The architecture of the compressor tree was first introduced in [1], designed for parallel compres-
sion (i.e., addition) of partial products in multiplication operations. This innovation has enabled
the application of compressor trees in other datapath circuits, such as MACs and vector adders.
Conventionally, MAC operations extend the functionality of multipliers by incorporating an ac-
cumulator after multiplication, resulting in increased operational delay. In contrast, the merged
MAC is proposed, which enables the execution of MAC operations within the multiplication time
by integrating the addend directly into the partial products [2]. This approach also allows the
optimization methodologies developed for multipliers to be applied to MAC design optimization.
Generally, datapath designs, including adders, multipliers, and MACs, can be completed manu-
ally. Take multiplier design as an example. The manual design includes Wallace tree structure [1],
Dadda tree structure [3], and further optimized designs based on them [4–7], which effectively op-
timize area, power, and performance for specific technology nodes and applications. The Wallace
tree strategically organized the compressor layers [4]. An area-reduced tree is proposed by using a
maximum number of 3:2 compressors early and carefully placing 2:2 compressors [6]. Itoh et al. [5]
proposed an advanced rectangular-styled tree structure, tailored specifically for 32-bit×24-bit mul-
tipliers. Optimizations for mergedMAC structures have been explored based on the characteristics
of multiply-accumulate operations. Basiri et al. [8] proposed a high-radix Booth-encoded merged
MAC targeting floating-point DSP applications. Their design combines Wallace and Braun tree
structures to optimize circuit depth and area, effectively balancing performance and resource us-
age for floating-point operations. Tung et al. [9] proposed a method where the final addition and
accumulation of higher significance bits are merged to the partial products of the next multipli-
cation operation. Zhang et al. [10] proposed a strategy optimizing pipeline merged MAC. These
regular structure-based designs may not always meet the stringent PPA specifications required.
To address this, full custom-designed multipliers are developed, which are finely optimized for
specific fabrication processes or unique application scenarios [11–13]. However, a significant en-
gineering effort is required to explore the huge design space with manual design, which limits
design flexibility and efficiency.

The automatic generation or search methods have provided a more flexible solution to datapath
designs. A three-dimensional method for designing the compressor tree was proposed, which uti-
lized an input-to-output delay model [14–16]. Integer linear programming (ILP) is another widely
investigated approach for datapath circuit optimization. Xiao et al. [17] employed ILP for global
optimization of multiplier design by minimizing the total number of compressors in the compres-
sor tree. In addition, ILP has also been applied for exploring adder trees based on analytical area,
power, and timing models [18]. However, these works may suffer from the long runtime of the
ILP solver as well as the misaligned objective between the modeled PPA metrics and real synthe-
sized metrics. Heuristic search strategies utilize various pruning techniques and avoid exhaustive
searches [19–23]. A heuristic is introduced in [21] for the design of compressor trees using gener-
alized parallel counters (GPCs), aiming to optimize the balance between logic utilization and delay.
Kumm et al. [23] further advanced heuristic method in [21, 22] and combined the heuristic method
the with ILP.

Recently, machine learning methodologies have become promising solutions for circuit opti-
mization and design space exploration, where various learning models are leveraged as surrogate
models to evaluate designs during the search or optimization process [24–26]. An active learning-
based prefix adder exploration framework is proposed in [25], which uses the Gaussian process
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regression model to predict the delay and area based on the feature extracted from the prefix tree
structure. Geng et al. [24] further facilitated automatic feature learning for prefix adder structures
and deployed a sequential optimization framework that employs the graph neural process as a sur-
rogate model, which enables a more efficient and effective adder structure exploration. However,
the exploration still highly relies on a regression model as a proxy to the real PPA, whose model-
ing accuracy significantly affects the final results. Contrary to existing approaches, reinforcement
learning (RL) integrates actual PPA evaluations directly into its optimization loop, demonstrating
its feasibility by efficiently navigating complex design spaces. Recent advancements have seen RL
tackle a variety of challenges within electronic design automation (EDA), as evidenced by appli-
cations across different domains such as prefix circuit design optimization, analog circuit design
optimization and gate sizing [26–28]. Given the complexity of multiplier design and the vastness
of its design space, the feasibility of reinforcement learning in multiplier design optimization is
underscored. RL addresses this gap by leveraging real synthesized metrics as rewards, allowing
optimization of designs that perform better than analytical models after synthesis. In addition,
RL algorithms can also be enhanced with parallelism by implementing different environment in-
stances. By utilizing multiple threads, the stability and efficiency of deep reinforcement learning
algorithms are enhanced.

The design space of the multiplier is huge to explore. To address this, we have proposed an
RL-based framework that is tailored for the optimization of multipliers and merged MACs [29].
However, obtaining a suitable representation of the multiplier structure is non-trivial due to its
inherent complexity. To address this, we employ matrix and tensor representations for the com-
pressor tree in a multiplier, enabling seamless integration of neural networks as the agent network
in RL.These representations effectively capture the structural characteristics of the multiplier. The
agent can learn to make effective decisions by optimizing the trade-off between key performance
metrics such as power, performance, and area using a Pareto-driven approach. Furthermore, to
exploit the huge design space more efficiently, the proposed framework also features design space
pruning and parallel RL agent training for more efficient optimization. To validate the effective-
ness of the proposed framework, we applied it to design and optimize multipliers with different
bit widths. The experimental results show that our approach outperforms various baseline meth-
ods, including legacy designs, evolutionary algorithms, and integer linear programming, in terms
of area and delay. Moreover, to validate the effectiveness of the optimized multipliers and MACs,
a computation module, e.g., a process element (PE) array, is implemented with the multipliers
and MACs generated by the RL agent, and the PPA gets improved accordingly. In summary, the
contributions are as follows:

• We propose a multiplier optimization framework based on reinforcement learning, marking
the first instance of applying reinforcement learning for this purpose to our knowledge.
• We present a matrix and a tensor representation for multipliers, which enables the seamless
integration of deep neural networks as the agent network. A Pareto-driven reward is em-
ployed to accommodate the trade-off between the area and delay so that the agent can learn
to achieve Pareto-optimal designs.
• To improve search efficiencywithin this framework, we further enhance the frameworkwith
a parallel training methodology to enable faster and more stable training.
• We also broaden the scope of the RL-based multiplier design framework to include fused
MAC to validate the applicability.
• Experimental results demonstrate that the multipliers and MACs produced by RL agents
dominate all baseline designs in terms of both area and delay. Furthermore, applying the
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Fig. 1. Multiplier architecture

optimized multipliers and MACs to the implementation of a larger computation module also
results in PPA improvement, which validates the effectiveness of the optimized designs.

2 PRELIMINARY
2.1 Multiplier Architecture
Themultiplier typically comprises three primary components: a partial product generator (PPG), a
compressor tree (CT), and a carry propagation adder, as shown in Figure 1. PPG generates partial
products (PPs) from the multiplicand and multiplier, while the CT compresses these PPs into two
parallel rows. Subsequently, an adder is utilized to aggregate these two rows of PPs, culminating
in the final product. A typical partial product generator generally employs 𝑁 2 AND gates for
an 𝑁 -bit multiplier. A CT has multiple compression stages to compress the PPs into two rows.
Predominantly, there are 3:2 compressors and 2:2 compressors implemented through a full adder
and a half adder, respectively. A 3:2 (resp. 2:2) compressor applied at column 𝑗 of stage 𝑖 receives
3 (resp. 2) partial products as input from column 𝑗 of stage 𝑖 , passing the sum output to column
𝑗 of stage 𝑖 + 1, and the carry out to column 𝑗 + 1 of stage 𝑖 + 1. Consequently, a 3:2 compressor
decreases the partial products of column 𝑗 by two, while a 2:2 compressor reduces them by one,
each incrementing the partial products in column 𝑗 + 1 by one.

2.2 Q-Learning
RL encompasses a collection of optimization problems referred to as state 𝑠 , with a corresponding
set of actions 𝐴. An agent transitions from one state 𝑠 to another state 𝑠′ by executing an action
𝑎 ∈ 𝐴, consequently receiving a reward 𝑟 (𝑠, 𝑎) as an evaluation from the RL environment. The
model governing action selection is known as the policy 𝜋 . The primary objective of the RL agent
is to devise a policy that optimizes the cumulative reward.

Q-learning is an RL algorithm that learns the scores of each action 𝑎 for a given state 𝑠 , and the
score is called Q-value, represented by𝑄 (𝑠, 𝑎). According to Bellman equation [30], the Q-value is
calculated as follows:

𝑄 (𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) + 𝛾 max
𝑎′

𝑄 (𝑠′, 𝑎′) , (1)

where 𝑠′ indicates the next state, and 𝛾 is the discount factor. Therefore, the Q-value is updated by:

𝑄 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝛼
[
𝑟 (𝑠, 𝑎) + 𝛾 max

𝑎′
𝑄 (𝑠′, 𝑎′) −𝑄 (𝑠, 𝑎)

]
, (2)
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where 𝛼 is the learning rate. In this paper, we utilize the deep Q-learning approach, leveraging a
deep neural network to approximate the Q-value. Here, the state 𝑠 represents the architecture of
the multiplier, detailed in Section 3.2. An action 𝑎 alters the current multiplier architecture into a
new one, effectively progressing to the next state. The reward 𝑟 is quantified by the enhancements
in the multiplier’s area and delay metrics.

2.3 Advantage Actor-Critic
The A2C algorithm [31] addresses the challenges of high variance and unstable learning due to
strong correlations between consecutive states by splitting the traditional RL model into two com-
ponents: an actor that enacts policies and a critic that evaluates these actions. A policy network
𝜋 (𝑎 |𝑠;𝜃 ) and a value network 𝑣 (𝑠;𝑤) are employed, where 𝜃 and𝑤 are the parameters of two neu-
ral networks, respectively. The synchronous multi-thread coordination method in A2C ensures
uniform learning and parameter updates. This synchronization removes the need for different
agents in A3C [31], as the single agent with different environment instances suffices, while there-
fore avoiding updates based on outdated copies, significantly stabilizing the training process and
offering sufficient parallelism and effectiveness [32, 33]. The A2C algorithm employs bootstrapped
advantage estimates generated by the critic instead of mere state-value approximations to enhance
gradient estimation accuracy and learning efficiency [34]. With state 𝑠 and action 𝑎, The advantage
is defined as:

𝐴(𝑠, 𝑎) = 𝑄𝜋 (𝑠, 𝑎) −𝑉𝜋 (𝑠), (3)
where 𝑄𝜋 (𝑠, 𝑎) indicates the action-value function that estimates the expected reward that can be
obtained by taking action 𝑎 and then following strategy 𝜋 at state 𝑠 , while𝑉𝜋 (𝑠) indicates the state-
value function that estimates the expected reward that can be obtained in state 𝑠 if the strategy 𝜋
is followed from that state instead of taking a specific action [32, 35].

For a known transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), to facilitate calculations of advantage function, we use
a value network 𝑣 (𝑠𝑡 ;𝑤) to approximate the state-value function 𝑉𝜋 (𝑠𝑡 ), and estimate 𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 )
through Monte Carlo methods based on the Bellman equation. Consequently, we can approximate
(3) as:

𝐴(𝑠𝑡 , 𝑎𝑡 ) ≈ 𝑟𝑡 + 𝛾 · 𝑣 (𝑠𝑡+1;𝑤) − 𝑣 (𝑠𝑡 ;𝑤), (4)
where 𝛾 is the discount factor.

3 PROPOSED METHOD
3.1 Overview
As illustrated in the left of Figure 2, our original RL-MUL framework leverages a reinforcement
learning approach formultiplier design optimization. An RL agent engages in iterative interactions
with its environment from an initial state 𝑠0. At any given state 𝑠𝑡 , the RL agent, guided by a policy
𝜋 derived from the policy network, selects an action 𝑎𝑡 from a set of legal actions. This action
modifies the current multiplier configuration, leading to a new state 𝑠𝑡+1. Subsequently, a reward 𝑟𝑡
is computed using EDA tools, facilitating the neural network model’s update based on the received
feedback.

3.2 Multiplier Representation
The RL state space, denoted as S, consists of all possible configurations of 𝑁 -bit multipliers. We
recognize the count of various compressors in each column as a critical attribute influencing the
synthesized performance metrics of the multipliers. Consequently, we characterize the multiplier
architecture using the aggregate counts of 3:2 and 2:2 compressors across columns, encapsulated
by a matrix 𝑴 ∈ R2𝑁×2. In this matrix, the first and second rows quantify the total 3:2 and 2:2
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compressors in each column, respectively. An illustration of a 4-bit multiplier structure alongside
its matrix representation 𝑴 is provided in Figure 3. To derive a complete multiplier structure
from 𝑴 , the compressors are allocated to specific stages. However, the mapping from 𝑴 to the
structures is not unique since different assignments of compressors in multiple stages may have
the same overall number in each column. To achieve a distinctive representation, we advance to a
tensor representation that offers more informative insights, as illustrated in Figure 3.
We represent the tensor as T ∈ R𝐾×2𝑁×𝑆𝑇 , with 𝐾 indicating the total kinds of compressors

used and 𝑆𝑇 the stage count. Specifically, we utilize 3:2 and 2:2 compressors, thus 𝐾 = 2. This
framework is designed for potential extension to accommodate more compressor variants. The
tensors 𝑻 (0) = T0,:,: ∈ R2𝑁×𝑆𝑇 and 𝑻 (1) = T1,:,: ∈ R2𝑁×𝑆𝑇 respectively map the placement of 3:2 and
2:2 compressors. The elements 𝑡 (0)𝑖 𝑗 and 𝑡 (1)𝑖 𝑗 denote the quantity of 3:2 and 2:2 compressors at the 𝑗-
th column of the 𝑖-th stage. Given a matrix𝑴 that contains the information of the overall number
of compressors in each column, we can construct the tensor representation T correspondingly
based on an assignment scheme of the compressors in different stages.

For the assignment process, we employ a deterministic method that assigns compressors from
the least to the most significant bit columns, prioritizing 3:2 compressors and then utilizing 2:2
compressors where applicable. This method progresses through stages until all compressors are
allocated, as detailed in Algorithm 1. This approach guarantees a unique tensor representation for
each multiplier structure, facilitating precise and unambiguous characterizations of the multiplier
architecture.
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Algorithm 1 Compressor Assignment
Require: 𝑴 : Matrix representation
Ensure: T : Tensor representation.
1: for 𝑗 ← 1 𝑡𝑜 2𝑁 do
2: 𝑖 ← 0
3: while column 𝑗 exists not assigned comp. do
4: Assign 3:2 comp. to stage 𝑖 column 𝑗 first
5: Update 𝑡 (0)𝑖 𝑗 in 𝑻 (0)

6: if Remaining PPs ≥ 2 then
7: Assign 2:2 comp. to stage 𝑖 column 𝑗
8: Update 𝑡 (1)𝑖 𝑗 in 𝑻 (1)

9: end if
10: 𝑖 ← 𝑖 + 1
11: end while
12: end for
13: T0,:,: ← 𝑻 (0)

14: T1,:,: ← 𝑻 (1)
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3.3 Multiplier Modification
In the RL agent’s context, an action 𝑎 signifies the agent’s choice to alter the existing structure
of the multiplier. The agent can choose from four distinct actions for each column: adding or re-
moving a 2:2 compressor, and replacing a 3:2 or a 2:2 compressor with another type. We denote
𝑟𝑒𝑠 𝑗 to present the PP number after compression of column 𝑗 , which should only be 1 or 2. Actions
leading to 𝑟𝑒𝑠 𝑗 values of 0 or 3, such as adding or removing a 3:2 compressor, are excluded, thereby
defining the action space as |A| = 2𝑁 × 4 = 8𝑁 . It is important to note that not every action is
feasible to yield a legal multiplier structure instantly. For instance, if there is no 2:2 compressor
in column 1 as depicted in Figure 3, attempting to remove a 2:2 compressor from this column is
considered invalid. Similarly, any action 𝑎 on column 𝑗 that results in the partial product (PP)
numbers post-compression being either 0 or 3 would be considered invalid. Take another example
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from Figure 3. Removing a 2:2 compressor from column 4 would lead to 𝑟𝑒𝑠4 equating to three,
thereby invalidating the action.

For a compressor tree with 2𝑁 columns, the output of a deep Q-network is a vector that indicates
the predicted Q-values:

𝑄 (𝑠𝑡 ) = [𝑞11, 𝑞12, 𝑞13, 𝑞14, · · · , 𝑞2𝑁,1, 𝑞2𝑁,2, 𝑞2𝑁,3,𝑞2𝑁,4], (5)

where each group of 𝑞 𝑗1, 𝑞 𝑗2, 𝑞 𝑗3, 𝑞 𝑗4 indicates the Q-value of the four actions 𝑎 𝑗1, 𝑎 𝑗2, 𝑎 𝑗3, 𝑎 𝑗4 in
column 𝑗 . To ensure only legal actions can be selected, a mask 𝒎 is utilized as the selector to
enable valid actions and forbid invalid actions.

𝒎 = [𝑚10,𝑚11,𝑚12,𝑚13, · · · ,𝑚2𝑁,0,𝑚2𝑁,1,𝑚2𝑁,2,𝑚2𝑁,3], (6)

where each entry is a binary value. If an action 𝑎𝑖 𝑗 is valid, the corresponding entry in 𝑚𝑖 𝑗 is 1.
Otherwise, it is 0. In the proposed RL framework, the final masked Q-value vector is the element-
wise multiplication of the mask vector and Q-value vector:

𝑄 ′ (𝑠𝑡 ) = 𝑄 (𝑠𝑡 ) ⊙ 𝒎. (7)

Now the decision is given by
𝑎𝑡 = argmax

𝑎
𝑄 ′ (𝑠𝑡 , 𝑎) . (8)

Note that only non-zero entries are considered.The action applied to column 𝑗 changes the num-
ber of 3:2 or 2:2 compressors of the current column 𝑗 , which may cause the number of compressed
PPs of subsequent column 𝑗 + 1 to become 0 or 3. We use the legalization strategy shown in Algo-
rithm 2 to refine the multiplier structure to ensure the PPs are compressed to 2 rows. This strategy
sequentially refines from column 𝑗 + 1 to the MSB, addressing under-compression by adding or
replacing compressors, and managing over-compression by removing compressors. Similar to the
assignment procedure, the legalization process is also deterministic. Under state 𝑠𝑡 , we can get a
new state 𝑠𝑡+1 after performing action 𝑎𝑡 to modify the structure along with the legalization.

3.4 Pareto-driven Reward
In our framework, we define the reward, 𝑟𝑡 , as the improvement in circuit metrics, such as area,
delay, and power, achieved by executing an action 𝑎𝑡 at state 𝑠𝑡 . Considering the nature of the
trade-off between power, performance, and area (PPA), a superior multiplier design is always ex-
pected to achieve Pareto-optimal in terms of these dimensions. To encourage the RL agent to learn
to generate Pareto-optimal designs, we introduce a Pareto-driven reward mechanism. This mech-
anism leverages a synthesis flow under multiple design constraints, enabling the reward to cover
a variety of design scenarios: those driven primarily by area, delay, or power, as well as scenar-
ios seeking a trade-off optimization of these three key metrics. The overall cost is calculated as a
weighted sum of area, delay, and power, allowing for flexible adjustment of their relative impor-
tance in different design scenarios:

𝑐𝑜𝑠𝑡 = 𝑤𝑎
𝑛∑
𝑖=1

𝑎𝑟𝑒𝑎𝑖 +𝑤𝑑
𝑛∑
𝑖=1

𝑑𝑒𝑙𝑎𝑦𝑖 +𝑤𝑝
𝑛∑
𝑖=1

𝑝𝑜𝑤𝑒𝑟𝑖 , (9)

where 𝑎𝑟𝑒𝑎𝑖 , 𝑑𝑒𝑙𝑎𝑦𝑖 , and 𝑝𝑜𝑤𝑒𝑟𝑖 are the synthesized metrics under the 𝑖-th constraint. Since the
area, delay, and power values have substantially different ranges, we normalize the area, delay,
and power metrics to a consistent scale using Wallace tree implementations. 𝑤𝑎 , 𝑤𝑑 and 𝑤𝑝 are
the weights to trade off PPA. We define our reward 𝑟 as the difference between 𝑠𝑡 and 𝑠𝑡+1:

𝑟𝑡 = 𝑐𝑜𝑠𝑡𝑡 − 𝑐𝑜𝑠𝑡𝑡+1 (10)
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Algorithm 2 Legalization
Require: Multiplier structure to be legalized; 𝐶: action column
Ensure: Legalized multiplier structure
1: for 𝑗 ← (𝐶 + 1) 𝑡𝑜 2𝑁 do
2: 𝑟𝑒𝑠 𝑗 ← Get residual PPs after compression
3: if 𝑟𝑒𝑠 𝑗 = 1 or 𝑟𝑒𝑠 𝑗 = 2 then
4: return ⊲ legalization done
5: else if 𝑟𝑒𝑠 𝑗 == 3 then
6: if exists 2:2 comp. in column 𝑗 then
7: Replace a 2:2 compressor
8: else
9: Add a 3:2 compressor
10: end if
11: else if 𝑟𝑒𝑠 𝑗 == 0 then
12: if exists 2:2 compressor in column 𝑗 then
13: Delete a 2:2 compressor
14: else
15: Delete a 3:2 compressor
16: end if
17: end if
18: end for

3.5 Training Algorithm
We adopt ResNet-18 [36] as the backbone of Q-Network with the parameters denoted by 𝜃 . The
state undergoes encoding into a tensor representation T , as detailed in Section 3.2, before being
processed by the Q-network. The RL training methodology is outlined in Algorithm 3. Initially,
action selections 𝑎 are randomized during the warm-up phase (Line 6), transitioning to policy-
based selections in subsequent steps (Line 8).

Each iteration 𝑡 leads to the transformation of the multiplier’s architecture from 𝑠𝑡 to 𝑠𝑡+1, cul-
minating in a reward 𝑟𝑡 derived from synthesis and timing analysis. This process generates a new
transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), which is recorded. Then, the network parameter 𝜃 is updated by gradi-
ent descent, and 𝑤 is also updated in actor-critic methods(Line 14). The target Q-value for each
state-action pair within the batch is determined as follows:

𝑦 = 𝑟 ′ + 𝛾 max
𝑎′

𝑄 ′ (𝑠′, 𝑎′;𝜃 ), (11)

where 𝛾 is the discount factor. Based on the expected Q-value 𝑦, a gradient of 𝜃 can be obtained
by:

Δ𝜃 = ∇𝜃 (𝑦 −𝑄 ′ (𝑠, 𝑎;𝜃 ))2. (12)

Then, the network parameter 𝜃 is updated by gradient descent(Line 14). By incorporating masked
actions in backpropagation, the Q-network learns to assign lower Q-values to seldom-used, invalid
actions, minimizing their selection in future iterations.

4 RL-MUL 2.0
Optimizing hardware configurations requires an efficient search within a vast design space, partic-
ularly in multiplier design, where an increase in bit width exponentially expands the design space.
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Algorithm 3 RL-MUL flow
Require: 𝑴0: initial multiplier structure;𝛾 : discount factor;𝛼 : learning rate;𝑇 : total training steps;

𝑇𝐵 : warm-up steps
Ensure: 𝜃 : Q-network parameters
1: Replay buffer 𝐵 ← {}
2: Encode 𝑠0 into T based on 𝑴0 ⊲ Algorithm 1
3: 𝑡 ← 0
4: for 𝑡 ← 0 to 𝑇 do
5: if 𝑡 < 𝑇𝐵 then
6: 𝑎𝑡 ← randomly choose from legal actions
7: else
8: Get 𝑎𝑡 by Equation (8)
9: end if
10: Perform 𝑎𝑡 to 𝑠𝑡 and get 𝑠𝑡+1
11: Run EDA tools on 𝑠𝑡+1 and get 𝑟𝑡 ⊲ Equation (10)
12: Push (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) to 𝐵
13: Sample a batch of transitions from 𝐵
14: Update 𝜃 by gradient descent ⊲ Equation (12)
15: end for

Therefore, dealing with this enlarged space effectively becomes crucial, especially for larger de-
signs like MACs, where the DQN algorithm may struggle to achieve optimal results.

In this work, we extend the proposed RL framework to MAC designs, enhancing its application
in deep learning acceleration. To tackle the greater challenges of more complex designs, we use
parallel algorithms to improve efficiency from two perspectives. Firstly, parallel optimization is
always a promising solution in this scenario. Their inherent parallelism not only reliably boosts
search efficiency but also fosters a thorough exploration of possible designs, enhancing the likeli-
hood of uncovering optimal or nearly optimal solutions. Secondly, search space pruning condenses
the design space by discarding less promising designs. This approach emphasizes exploring viable
design areas, thus refining the search process and minimizing computational demands. Eliminat-
ing inferior designs early on ensures a more targeted and efficient discovery of superior configura-
tions. In addition, integrating metrics with high correlation can achieve a similar purpose, not only
significantly simplifying the optimization process but also enhancing the focus on configurations
that genuinely contribute to performance improvements.

4.1 Extend to Merged Multiply-Accumulator Architecture
An integral component of many digital signal processing systems and neural network architec-
tures is the multiply accumulator (MAC), which can be a decisive factor in determining the overall
performance of many computing-intensive systems. Incorporating compressor trees within MACs
offers a pathway to enhance their efficiency. Rather than treating multiplication and accumulation
as sequential operations, this approach seamlessly integrates them. By merging the accumulation
(addition) directly into the partial product stages of multiplication and conducting partial product
compression, we can capitalize on parallelism, thus potentially speeding up the entire MAC op-
eration. We can see that the proposed RL framework can seamlessly support the optimization of
fused MAC design.

By integrating the addition into the partial product generation phase, the representation within
the RL framework is tweaked to consider the intricacies of the MAC operation. The aim is to train
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Fig. 5. Comparison of RL algorithm between single-thread and multi-thread implementations.

the RL agent to explore and design optimal MAC structures, utilizing compressor trees for efficient
parallel addition. Therefore, the representations in Section 3.2 can be easily extended to MACs by
providing “merged” partial products, and the training procedure will be identical. In Section 5, we
will demonstrate the effectiveness and superiority of the proposed RL framework for fused MAC
design.

4.2 Multiple Agents Training
Multiple agents running in parallel are more likely to explore different parts of the environment,
promoting more efficient and stable policy training. Therefore, as shown in Figure 5, compared to
the single-thread RL algorithm implemented in the proposed RL framework, we further enhance
the proposed framework by training multiple agents in parallel, where each agent is handled by a
thread. Following the training stability analysis in [31], each agent in our framework is designed
with the A2C scheme, where the policy and value networks share the convolution layers of ResNet-
18. Specifically, we employ a shared global network parameter across threads, each interacting
with its local environment independently, followed by an average of all threads’ gradient updates
to adjust the global parameter. 𝑛 parallel threads synchronously process corresponding transitions
(𝑠 (𝑖 )𝑡 , 𝑎 (𝑖 )𝑡 , 𝑟 (𝑖 )𝑡 , 𝑠 (𝑖 )𝑡+1). The right side of Figure 2 illustrates the synchronous parallel structure with
A2C. At each step, given 𝑛 is the number of threads, the agent selects 𝑎𝑡 including 𝑛 actions for
threads, the 𝑖-th thread’s RL-MUL environment instance receives its corresponding action 𝑎 (𝑖 )𝑡 and
transitions to the new state 𝑠 (𝑖 )𝑡+1, which is returned with the reward 𝑟 (𝑖 )𝑡 to the agent. Thus, in A2C,
each element of the transition tuples (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) is an 𝑛-element vector. Then Equation (5) is
transformed into:

𝜋 (·|𝑠𝑡 ) = [𝜋11, 𝜋12, 𝜋13, 𝜋14, · · · , 𝜋2𝑁,1, 𝜋2𝑁,2, 𝜋2𝑁,3,𝜋2𝑁,4], (13)
where each group of 𝜋 𝑗1, 𝜋 𝑗2, 𝜋 𝑗3, 𝜋 𝑗4 indicates the probability of the four actions 𝑎 𝑗1, 𝑎 𝑗2, 𝑎 𝑗3, 𝑎 𝑗4 in
column 𝑗 . The mask is configured as in Section 3.3, and the final masked probability distribution
vector is:

𝜋 ′ (·|𝑠𝑡 ) = 𝜋 (·|𝑠𝑡 ) ⊙ 𝒎. (14)
Now, the decision is given by

𝑎𝑡 ∼ 𝜋 ′ (·|𝑠𝑡 ) . (15)
Algorithm 4 outlines the parallel training and optimization flow in RL-MUL 2.0 [32, 34]. Firstly,

𝑛 threads (Line 1) are initiated. Then, at each step, a multiplier structure alteration 𝑎𝑡 is sampled
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Algorithm 4 RL-MUL 2.0 flow
Require: 𝑛: number of threads; 𝑇 : total training steps; 𝑡𝑢𝑝 : update interval
Ensure: 𝜃 : policy network parameters;𝑤 : value network parameters
1: Initialize 𝑛 parallel threads
2: for 𝑡 ← 0 to 𝑇 do
3: Sample a multiplier structure alteration 𝑎 (𝑖 )𝑡 by Equation (15), ∀𝑖 ∈ {1, 2, . . . , 𝑛}
4: Perform 𝑎 (𝑖 )𝑡 to get structure 𝑠 (𝑖 )𝑡+1 and 𝑟

(𝑖 )
𝑡 , ∀𝑖 ∈ {1, 2, . . . , 𝑛}

5: if 𝑡 | 𝑡𝑢𝑝 then
6: Update 𝜃 by gradient ascent ⊲ Equation (16)
7: Update𝑤 by gradient descent ⊲ Equation (19)
8: end if
9: end for

from Equation (15), which incorporates masks to prevent the selection of actions that lead to in-
valid multiplier structures (Line 3). Following this, the chosen action is executed to obtain a new
structure and its corresponding reward (Line 4). In terms of the model updating, this algorithm
employs an 𝑛-step return approach for faster learning, updating the policy network parameter 𝜃
and the value network parameter 𝑤 only when the total training steps constitute an integer mul-
tiple of the update interval (Line 5). A policy gradient of 𝜃 used to update the policy network can
be obtained by:

Δ𝜃 = ∇𝜃 log𝜋 (𝑎𝑡 |𝑠𝑡 ;𝜃 ) · 𝐴(𝑠𝑡 , 𝑎𝑡 ), (16)
where 𝜋 (𝑎𝑡 |𝑠𝑡 ;𝜃 ) is the policy network definited by parameter 𝜃 at time 𝑡 , and 𝐴 is the advantage
function defined in Equation (4) [35]. Then, the policy network parameter 𝜃 is updated by gra-
dient ascent (Line 6). In addition, the Temporal-Difference (TD) learning [37] aspect of the A2C
algorithm guides the value network 𝑣 (𝑠𝑡 ;𝑤) to converge to the TD target 𝑦𝑡 , defined as:

𝑦𝑡 = 𝑟𝑡 + 𝛾 · 𝑣 (𝑠𝑡+1;𝑤), (17)

where 𝛾 represents the discount factor. The TD target combines the real reward 𝑟𝑡 after taking the
action 𝑎𝑡 with the predicted value of the next state 𝑠𝑡+1, serving as a crucial element in computing
the TD error. This error is expressed as:

𝛿𝑡 = 𝑣 (𝑠𝑡 ;𝑤) − 𝑦𝑡 , (18)

measuring the discrepancy between the estimated value of the state before taking the action 𝑎𝑡 and
the TD target. In other words, the TD error reflects the accuracy of the value function prediction.
Based on the TD error, a gradient of𝑤 used to update the value network can be obtained by:

Δ𝑤 = −∇𝑤
(𝛿𝑡 )2
2

= −𝛿𝑡 · ∇𝑤𝑣 (𝑠𝑡 ;𝑤). (19)

Then, the value network parameter𝑤 is updated by gradient descent (Line 7).

4.3 Objective Space Reduction
The goal of multiplier design space exploration is to find designs that are superior in terms of mul-
tiple objectives. In Equation (10), a weighted reward is designed such that the agent can acquire
a good trade-off among different objectives, while the selection of weights for each objective can
impact the final solutions substantially. The more objectives we have, the more effort is required
for tuning the weights. Notably, we investigated a correlation between the area and the power of
a multiplier. Based on the architectures we have searched for, it is observed that the power and
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area are highly correlated. A correlation between these two factors represented by box plots is
illustrated in Figure 6, the upper graph depicts the relationship for 8-bit AND-based multipliers,
while the lower plot shows the same for 16-bit AND-based multipliers. The bottom and top bound-
aries of the box represent the first and third quartiles, respectively, indicating the inter-quartile
range (IQR). The median is denoted by the band within the box. The upper whisker represents the
maximum value of the data, and the lower whisker represents the minimum value of the data. It
can be observed from the trend in Figure 6 that there exists a strong positive correlation between
the area and the power, which suggests that the area is a reliable indicator of the power. Conse-
quently, our methodology gives precedence to area and delay as key optimization metrics, which
allows Equation (9) to be further reduced to:

𝑐𝑜𝑠𝑡 = 𝑤𝑎
𝑛∑
𝑖=1

𝑎𝑟𝑒𝑎𝑖 +𝑤𝑑
𝑛∑
𝑖=1

𝑑𝑒𝑙𝑎𝑦𝑖 (20)

4.4 Search Space Pruning
Furthermore, another analysis indicates the number of stages of a compressor tree as a significant
factor affecting the area and delay of multipliers, as shown in Figure 7. This analysis takes 8-bit
AND-based multiplier structures as an example. Notably, there is a positive relationship between
stage number and the parameters of area and delay.This suggests that an increase in stage number
is associated with a corresponding rise in these metrics. To mitigate this, our framework integrates
a strategy to constrain actions that will lead to excessive stage increases, which facilitates a more
efficient search and optimization toward desired multiplier structures.
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5 EXPERIMENTAL RESULTS
5.1 Setup
The proposed framework is implemented on a Linux system powered by a 2.8 GHz AMD EPYC
CPU and an NVIDIA RTX 3090 GPU.We use EasyMAC [38] for RTL generation and have extended
its capabilities by incorporating Modified Booth Encoding (MBE)-based partial product genera-
tion, as well as enhancing support for the RTL generation of merged MAC units. These designs
are synthesized using the OpenROAD flow [39] with the NanGate 45𝑛𝑚 Open Cell Library [40].
OpenSTA[41] is utilized to perform timing analysis. To ensure the functional correctness of the
generated multipliers, we first convert RTL into AIGER format using Yosys [42], and use the cec
command in ABC[43] to perform logic equivalence verification with a golden implementation of
multiplier.

Given the prevalent use of 8-bit and 16-bit multipliers, the RL-MUL 2.0 framework is assessed
using both 8-bit and 16-bit multipliers, incorporating AND-based PPG and MBE-based PPG. We
compare our approach against established baselines, including the legacy Wallace tree[1], an ILP-
based method GOMIL [17], and the simulated annealing (SA) technique. Four delay constraints
are configured in Equation (9). The weights 𝑤𝑎 and 𝑤𝑑 range from 0 to 1, resulting in different
optimization preferences towards area or delay. In native RL-MUL implementation, we set 𝛾 to
0.8, learning rate to 0.0002, 𝜖 to decay from 0.95 to 0.05, and employ RMSProp optimizer [44] for
the training. In the RL-MUL 2.0 implementation, we employ four synchronization threads and a
five-step return. We train the original RL-MUL and RL-MUL 2.0 10,000𝑠 and run SA for the same
amount of time. During this period, RL-MUL performs approximately 450 iterations, while RL-
MUL 2.0 performs about 650 iterations, exploring 4 design points in each iteration. Each iteration
of RL-MUL takes about 22 seconds, and each iteration of RL-MUL 2.0 takes about 15 seconds. For
the ILP approach, solving the 8-bit cases takes approximately 1𝑚𝑖𝑛, whereas the 16-bit cases re-
quire around 16 ℎ. Synthesizing under varying design constraints produces different netlists for
the same RTL design. We synthesize all the obtained multipliers and MACs across target delays
from 0.05 𝑛𝑠 to 1.2 𝑛𝑠 . Furthermore, to enhance the demonstration of RL-MUL 2.0’s effectiveness
and the performance of the resulting designs, we incorporate these multipliers and MACs from all
evaluated methods into large macro designs. Processing Element (PE) arrays, commonly utilized
in DNN accelerators, consist of numerous MAC units, making them ideal for further evaluating
the impact of different multipliers and MACs on area and timing efficiency. By integrating differ-
ent multipliers and MACs into PE arrays, specifically following a systolic array architecture, we
investigate the potential for improvements in both area and timing within these structures.
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Fig. 10. Pareto-frontiers hypervolume comparison of (a) multipliers and (b) multiplier-implemented PE ar-
rays.

5.2 Multiplier Performance Comparison
The resulting area-delay curves formultipliers are illustrated in Figure 8, where the designs derived
from the RL-MUL framework outperform all baselines. Detailed statistics of minimum area, delay,
and balanced area-delay metrics are presented in Table 1 (the optimal results are marked in bold).
In the trade-off scenario, optimal corresponds to the lowest weighted sum of PPA in Equation (10).
Through the RL-MUL 2.0 framework, we achieve up to 10.0% area reduction under the minimum
area constraint and a 12.5% decrease in delay under the minimum delay constraint. Additionally,
the implementation in PE arrays, as shown in Figure 9 and Table 2, indicates similar performance,
with up to a 6.0% area reduction and up to 11.5% delay decrease.

The hypervolume [45]measures the volume enclosed by the Pareto frontier and a reference point
in the objective space, which is a common metric to evaluate the quality of the Pareto frontiers.
Hypervolume comparisons for multipliers presented in Figure 10a show that RL-MUL generates
significantly larger hypervolume than GOMIL, with average increases of 85.9%. RL-MUL 2.0 shows
an improvement of 11.1% compared to the original RL-MUL. Similarly, for PE arrays constructed
with the multiplier, as shown in Figure 10b, the average improvement of RL-MUL 2.0 compared
with GOMIL and original RL-MUL is 96.1% and 8.4% respectively.
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Table 1. Multiplier area, timing, and power comparison.

Preference Method
8-bit 16-bit

AND MBE AND MBE
Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (mW)

Area

Wallace[1] 427 0.8530 0.3513 555 1.0880 0.4975 1812 1.4073 1.962 2008 1.7016 2.187
GOMIL [17] 404 0.8420 0.3352 545 1.0797 0.4833 1706 1.3375 1.855 1882 1.5432 2.013

SA 397 0.8468 0.3317 538 1.0353 0.4845 1712 1.3619 1.860 1969 1.6184 2.133
RL-MUL 393 0.7643 0.3261 532 1.0162 0.4752 1705 1.2633 1.855 1882 1.5478 2.016

RL-MUL 2.0 388 0.7643 0.3237 532 1.0162 0.4752 1696 1.2481 1.845 1881 1.5478 2.008

Timing

Wallace[1] 545 0.7791 0.4977 720 0.9601 0.7054 2420 1.2672 2.822 2645 1.4709 3.032
GOMIL [17] 514 0.7750 0.4726 706 0.9571 0.6836 2281 1.2169 2.629 2482 1.3684 2.791

SA 507 0.7800 0.4656 697 0.9147 0.6886 2280 1.2616 2.619 2551 1.4125 2.893
RL-MUL 503 0.7033 0.4650 690 0.8922 0.6736 2281 1.1684 2.638 2475 1.3318 2.780

RL-MUL 2.0 507 0.6931 0.4670 690 0.8922 0.6736 2302 1.1263 2.658 2481 1.3085 2.791

Trade-off

Wallace [1] 458 0.8328 0.3820 637 1.0018 0.5900 2184 1.3054 2.562 2300 1.4954 2.537
GOMIL[17] 435 0.8086 0.3634 629 0.9837 0.5824 2061 1.2416 2.382 2106 1.4298 2.328

SA 402 0.8265 0.3366 556 0.9901 0.5163 1738 1.3161 1.907 2016 1.5071 2.232
RL-MUL 399 0.7451 0.3345 551 0.9662 0.5081 1731 1.2192 1.903 1927 1.4339 2.140

RL-MUL 2.0 401 0.7252 0.3360 551 0.9662 0.5081 1722 1.1875 1.887 1947 1.3923 2.148

Table 2. PE array (multiplier) area, timing, and power comparison.

Preference Method
8-bit 16-bit

AND MBE AND MBE
Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (mW)

Area

Wallace[1] 175892 1.1347 145.14 208782 1.3302 178.67 601492 1.6693 495.67 650385 1.8543 548.16
GOMIL[17] 170036 1.1237 141.11 206058 1.3154 176.36 574117 1.6017 470.92 618107 1.7403 522.13

SA 168401 1.1237 140.08 204288 1.2711 175.17 575479 1.6216 472.59 640443 1.794 536.34
RL-MUL 167312 1.0421 138.79 202926 1.2512 173.18 573709 1.5305 471.27 618107 1.6976 520.65

RL-MUL 2.0 165950 1.0421 137.65 202926 1.2512 173.18 571394 1.5148 469.23 617971 1.6976 520.57

Timing

Wallace[1] 213345 1.0436 175.97 258016 1.1988 220.73 775001 1.5809 639.48 827503 1.6992 692.68
GOMIL [17] 205378 1.0395 169.73 254475 1.1856 217.20 739591 1.5137 610.51 785896 1.6085 659.21

SA 203607 1.0395 168.23 251955 1.1505 214.85 739318 1.5398 608.93 813339 1.6777 681.73
RL-MUL 202722 0.9752 167.61 250185 1.1200 213.30 737139 1.4464 606.31 778678 1.5607 652.30

RL-MUL 2.0 203607 0.9621 168.52 250185 1.1200 213.30 736731 1.4166 604.51 778269 1.5607 652.30

Trade-off

Wallace[1] 191214 1.1017 157.57 236566 1.2254 198.45 628322 1.6419 518.51 735028 1.7352 601.46
GOMIL[17] 185357 1.0709 152.69 221857 1.2703 184.62 600947 1.5727 496.70 649908 1.6847 555.77

SA 169014 1.1079 139.35 204901 1.2552 181.19 580110 1.5959 479.28 652019 1.7225 566.53
RL-MUL 167925 1.0263 137.64 203539 1.2353 179.80 578339 1.4987 478.52 623691 1.6479 546.24

RL-MUL 2.0 168606 0.9966 138.06 203539 1.2353 179.80 576024 1.4844 475.76 623555 1.6479 545.83

5.3 MAC Performance Comparison
The curves in Figure 11 for MACs and PE arrays consisting of MAC, along with the detailed com-
parisons in Table 4, demonstrate that RL-MUL 2.0 designs achieve superior performance compared
to baselines. The RL-MUL 2.0 framework leads to up to a 13.4% area reduction under the minimum
area constraint and a 15.6% decrease in delay under the minimum delay constraint for MACs. Sim-
ilarly, PE arrays benefit from up to a 9.6% reduction in area and a 13.1% decrease in delay.

The hypervolume metrics, shown in Figure 12 for MACs and PE arrays implemented by MAC,
highlight RL-MUL 2.0’s efficiency. RL-MUL 2.0 generates an average of 81.7% more hypervolume
than GOMIL for MACs and 80.9% for the arrays. When comparing the performance of RL-MUL
2.0 to the original RL-MUL, there is a 7.0% increase for MACs and a 7.9% increase for arrays.

Regardless of the multiplier cases or theMAC cases, it is observed that the advantage of RL-MUL
2.0 over the SA approach varies between 8-bit and 16-bit configurations. GOMIL outperforms SA
in larger bit widths, suggesting that evolutionary algorithmsmay struggle with large design spaces
due to their complexity. The improvement margins over the SA method vary between 8-bit and
16-bit designs, with GOMIL outperforming SA in larger bit widths. This suggests the evolutionary
algorithm’s limitations in addressing the expansive design space of larger bit widths. Additionally,
the ILP-based method GOMIL simplifies the cost function by focusing solely on the area as the
optimization objective. This approach limits its ability to achieve optimization gains in terms of
delay consistently. In contrast, our approach employs multi-objective optimization, allowing us to
attain Pareto-optimal results across both area and delay, demonstrating RL-MUL 2.0’s consistent
superiority across evaluations.
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Table 3. MUL and MAC area, timing, and power comparison (commercial synthesis tool).

Preference Method
MUL MAC

8-bit 16-bit 8-bit 16-bit
Area (μm2) Delay (ns) Power (uW) Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (uW) Area (μm2) Delay (ns) Power (mW)

Area

Wallace[1] 332.5000 1.5710 312.2091 1612.2260 2.4991 2.0378 442.6240 1.7983 473.6569 1846.3060 2.5995 2.4445
GOMIL [17] 326.4040 1.4703 313.3043 1570.2830 2.4098 1.9783 393.9460 1.6543 420.6916 1700.0060 2.5103 2.2788
RL-MUL 322.6040 1.4578 196.7360 1550.5620 2.4004 1.9553 387.0640 1.6527 419.2456 1689.4040 2.5087 2.1896

RL-MUL 2.0 320.5080 1.4367 196.3859 1538.0440 2.3857 1.9247 379.3560 1.6432 414.6432 1640.3560 2.4818 2.1752

Timing

Wallace[1] 464.1700 1.1124 399.9932 1904.5600 2.3413 2.2190 576.1560 1.2860 585.1385 2117.3600 2.4768 2.6243
GOMIL [17] 440.7400 1.0789 378.6793 1770.2700 2.2812 2.1567 530.4040 1.2164 536.2910 1970.7940 2.4253 2.4654
RL-MUL 442.7080 1.0698 380.8763 1750.5080 2.2723 2.1367 531.8530 1.2167 533.7445 1972.6300 2.3464 2.4578

RL-MUL 2.0 428.7080 1.0567 366.7378 1744.7000 2.2660 2.1335 530.2460 1.2158 531.4654 1969.0400 2.339 2.4563

Trade-off

Wallace[1] 443.9540 1.1084 388.6333 1776.8800 2.3172 2.1315 554.0780 1.3003 562.4348 1979.8380 2.5050 2.5145
GOMIL [17] 431.4280 1.1024 378.2456 1690.3600 2.2419 2.0643 514.1780 1.2153 531.8048 1846.5720 2.4177 2.3804
RL-MUL 428.3760 1.0910 372.3638 1678.0340 2.2406 2.0541 509.3560 1.2015 527.8372 1816.3460 2.3935 2.3729

RL-MUL 2.0 420.4060 1.0860 362.3837 1669.4000 2.2387 2.0452 504.5040 1.1893 521.3543 1807.3040 2.3912 2.3679
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Fig. 11. Pareto-frontiers of the synthesis results on MACs and MAC-implemented PE arrays. From left to
right: 8-bit MAC; 16-bit MAC; 8-bit MAC-implemented PE arrays; 16-bit MAC-implemented PE arrays.
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Fig. 12. Pareto-frontiers hypervolume comparison of MACs and MAC-implemented PE arrays.

Table 4. MAC and PE array (MAC) area, timing, and power comparison.

Preference Method
MAC PE-MAC

8-bit 16-bit 8-bit 16-bit
Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (mW) Area (μm2) Delay (ns) Power (mW)

Area

Wallace[1] 534 0.9182 0.5212 1995 1.4234 2.313 181340 0.9561 167.32 600471 1.4868 553.84
GOMIL [17] 487 0.9063 0.4674 1889 1.3787 2.167 169491 0.9638 156.65 571053 1.451 529.78

SA 503 0.8775 0.4846 1981 1.3807 2.289 173577 0.9342 160.37 598836 1.4714 537.73
RL-MUL 471 0.8511 0.4584 1870 1.4046 2.169 165405 0.9112 154.41 568465 1.4673 523.36

RL-MUL 2.0 471 0.8511 0.4584 1868 1.3545 2.158 165405 0.9112 154.38 567784 1.4178 522.58

Timing

Wallace[1] 677 0.8359 0.7392 2646 1.264 3.291 219678 0.8856 202.61 771664 1.3187 710.85
GOMIL [17] 615 0.8119 0.6472 2494 1.2766 3.039 203743 0.8693 188.57 730670 1.3109 675.11

SA 642 0.7737 0.6865 2632 1.2652 3.282 210825 0.8331 195.18 769893 1.3448 694.90
RL-MUL 649 0.7324 0.6983 2568 1.2149 3.110 212596 0.7897 197.23 749533 1.2668 677.48

RL-MUL 2.0 642 0.7231 0.6948 2594 1.1992 3.192 210825 0.7827 195.18 758385 1.2487 683.39

Trade-off

Wallace [1] 552 0.8727 0.5450 2060 1.3248 2.432 186038 0.9107 173.17 611502 1.3851 563.23
GOMIL[17] 498 0.859 0.4857 2486 1.2766 3.014 172283 0.9161 160.37 582085 1.3729 535.26

SA 518 0.8202 0.5043 2005 1.3181 2.335 177322 0.8799 166.99 604148 1.4084 545.24
RL-MUL 482 0.8202 0.4774 1946 1.3016 2.329 168197 0.8799 158.36 588486 1.3429 529.68

RL-MUL 2.0 482 0.8202 0.4774 2002 1.2625 2.350 176777 0.8309 166.89 578816 1.3233 529.38
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Fig. 13. Optimization trajectories for differentmethods illustrate themean PPA± standard error. The shaded
areas represent the standard deviation of the PPA values.

5.4 Efficient and Stable Training
We conducted six experiments, each repeated three times, on the original RL-MUL, RL-MUL 2.0,
and SA algorithms, with a fixed PPA weight across two bit-widths. These experiments are catego-
rized into three groups: one focusing on AND-based MUL operations, another on MUL operations
employing Booth encoding, and a third on MAC operations. The mean PPA values are represented
by a solid line, with the standard deviation depicted as the surrounding shadow in Figure 13. Across
all datasets, our RL methods consistently demonstrate superior performance, significantly outper-
forming SA. Particularly, the RL-MUL 2.0 demonstrates superior results and a more stable and
efficient training process. Furthermore, it is observed that there exists a gap between the variance
shadow caused by independent repetitions of RL-MUL and RL-MUL 2.0 experiments, especially in
the 16-bit designs. So it implies that even if the DQN in RL-MUL were to support parallel agents
within the 10,000s runtime, the best results achieved are still not as good as RL-MUL 2.0.

When comparing efficiency, runtime serves as a key metric, reflecting the algorithm’s ability
to explore the design space within a given time. Parallel processing allows RL-MUL 2.0 to utilize
computational power to accelerate exploration. Notably, for the 8-bit MUL AND case, RL-MUL
2.0 achieves the optimal PPA value reached by RL-MUL in an average of 2,124 seconds. Similarly,
RL-MUL 2.0 reaches this level in 6,275 seconds for the 8-bit MUL MBE case, 5,166 seconds for the
8-bit MAC AND case, 136 seconds for the 16-bit MUL AND case, 5,985 seconds for the 16-bit MUL
MBE case, and 4,823 seconds for the 16-bit MAC AND case.These results indicate that RL-MUL 2.0
requires significantly less time to achieve the same performance level as RL-MUL, demonstrating
the efficiency of its parallel training approach.

In addition to OpenROAD flow and OpenSTA, we conducted a cross-check synthesis using Syn-
opsys Design Compiler [46] to validate the multipliers and MACs from our RL-MUL framework.
The results, shown in Table 3, demonstrate that RL-MUL-designed multipliers consistently outper-
form baseline multipliers, achieving superior area, delay, and power metrics under commercial
EDA tools, thereby confirming the effectiveness and robustness of our designs across synthesis
environments.

6 CONCLUSION
In this research, we introduce a novel framework for optimizingmultipliers through reinforcement
learning. The framework utilizes an RL agent that adapts based on EDA tool feedback to engineer
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multipliers achieving Pareto optimality. We demonstrate that multipliers and MACs designed by
RL can Pareto-dominate multipliers that are produced by existing approaches. The obtained opti-
mized multiplier and MACs can be further applied in the implementation of a larger module, such
as a PE array. Looking ahead, we aim to broaden the application of our RL methodology to encom-
pass more extensive datapath components, enhancing the scope and impact of our optimization
efforts.
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