
UFO-MAC: A Unified Framework for Optimization of
High-Performance Multipliers and Multiply-Accumulators

Dongsheng Zuo, Jiadong Zhu, Chenglin Li, Yuzhe Ma∗
Microelectronics Thrust

The Hong Kong University of Science and Technology (Guangzhou)
yuzhema@hkust-gz.edu.cn

Abstract
Multipliers and multiply-accumulators (MACs) are critical arith-

metic circuit components in the modern era. As essential compo-
nents of AI accelerators, they significantly influence the area and
performance of compute-intensive circuits.This paper presents UFO-
MAC, a unified framework for the optimization of multipliers and
MACs. Specifically, UFO-MAC employs an optimal compressor tree
structure and utilizes integer linear programming (ILP) to refine the
stage assignment and interconnection of the compressors. Addition-
ally, it explicitly exploits the non-uniform arrival time profile of
the carry propagate adder (CPA) within multipliers to achieve tar-
geted optimization. Moreover, the framework also supports the opti-
mization of fused MAC architectures. Experimental results demon-
strate that multipliers and MACs optimized by UFO-MAC Pareto-
dominate state-of-the-art baselines and commercial IP libraries.The
performance gain of UFO-MAC is further validated through the im-
plementation of multipliers and MACs within functional modules,
underlining its efficacy in real scenarios.

ACM Reference Format:
Dongsheng Zuo, Jiadong Zhu, Chenglin Li, Yuzhe Ma∗. 2024. UFO-MAC: A
Unified Framework for Optimization of High-Performance Multipliers and
Multiply-Accumulators. In IEEE/ACM International Conference on Computer-
Aided Design (ICCAD ’24), October 27–31, 2024, New York, NY, USA. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3676536.3676793

1 Introduction

In digital circuit design, multipliers and multiply-accumulators
are fundamental arithmetic components, which are particularly crit-
ical for computation-intensive applications. Consequently, the opti-
mization of high-performance multipliers and MACs becomes im-
perative, as their optimization significantly influences overall per-
formance, energy efficiency, and area footprint.

The fundamental architecture of a multiplier typically includes
three key components: a partial product generator (PPG), a com-
pressor tree (CT), and a carry propagate adder (CPA). The CT effi-
ciently compresses the partial products generated by the PPG into

*Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCAD ’24, October 27–31, 2024, New York, NY, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1077-3/24/10…$15.00
https://doi.org/10.1145/3676536.3676793

CT critical path: 1.30 𝑛𝑠

CPA critical path : 1.81 𝑛𝑠

Global critical path: 2.37 𝑛𝑠

CT

CPA

Region 1 Region 2 Region 3

61 0

CPA input

Global output61 0

Figure 1:Motivating example:Theoptimization of theCT and
the CPA are not decoupled; CPA exhibits a non-uniform ar-
rival time profile, requiring optimization strategies different
from those of traditional adders methodology

two rows, which are then summed by the CPA to produce the fi-
nal product. The CT is crucial for efficiently performing the ad-
dition of partial products generated by the PPG in parallel [1, 2].
Moreover, there have been numerous customized designs specifi-
cally optimized for specific technology nodes and applications [3, 4,
5, 6]. While customized designs of multipliers offer precise control,
they often lack the flexibility to quickly adapt to new technology
nodes and applications. To address this, algorithmic methods have
emerged as more flexible solutions that leverage advances in algo-
rithmic strategies, mathematical programming, and heuristic search
techniques. The three-dimensional method (TDM) has been intro-
duced for the design of compressor trees[7, 8, 9]. In FPGA design, in-
teger linear programming (ILP) has been applied effectively to com-
pressor tree optimization, utilizing specialized counter resources to
efficiently balance area and delay [10]. Subsequent enhancements
have included sophisticated modeling techniques [11, 12], heuris-
tics to refine the solution space [13], and the comprehensive global
optimization of PPG and CPA [14]. The ILP for ASIC multiplier op-
timization was proposed in GOMIL [15], where the ILP was used to
minimize the area of the compressor tree, and linear programming
was utilized for the optimization of the CPA.

Regarding CPA design, prefix adders are adopted for more effi-
cient addition. Prefix adders incorporate regular structures that are
optimized regarding logic level, fan-out, and wire tracks, as seen
in Sklansky tree [16], Kogge-Stone tree [17], and Brent-Kung tree
[18]. Automated synthesis approaches have introduced greater flex-
ibility. Modify-based methods modify regular structures through
equivalent transformations to meet design constraints [19, 20, 21].
In addition, ILP has been utilized to systematically explore and opti-
mize adder trees, employing analytical models that account for area,
power, and timing [22]. Furthermore, Roy et al. have advanced this
field by proposing an exhaustive search approach that incorporates

https://doi.org/10.1145/3676536.3676793
https://doi.org/10.1145/3676536.3676793

pruning strategies, which effectively streamline the design process
by focusing only on the most promising configurations [23, 24, 25].
Recently, machine learning methodologies have emerged, which
employ surrogate evaluators to assess design variants during op-
timization [26, 27] or train an agent to directly optimize a design
[28, 29]. Notably, reinforcement learning has been applied to refine
traditional datapath architectures, such as in PrefixRL [28], where
it optimizes prefix adders by modifying classical adder structures.
Similarly, RL-MUL [29] represents compressor trees as tensors and
employs a reinforcement learning agent to optimize multiplier de-
sign. In addition, the interconnect order within the CT may also
impact the delay of CT, while RL-MUL only considered searching
for the total compressor number in each column of CT.

Despite that each component has been extensively explored in
previous studies, obtaining a high-performancemultiplier andMAC
is still non-trivial today. On the one hand, the design space of CT in
multipliers has not been well explored in prior research. The meth-
ods for compressor assignment and the interconnection orders be-
tween compressors significantly influence CT performance. These
aspects are often overlooked in existing works [15, 29]. On the other
hand, the three components of multipliers and MACs - PPG, CT,
and CPA - are not decoupled. As illustrated in Figure 1, the global
critical path of a multiplier does not simply accumulate the criti-
cal paths of CT and CPA. On the right side of Figure 1, we can see
that the CT output profile exhibits a “trapezoidal” shape, where the
data at the least significant bit (LSB) and most significant bit (MSB)
arrive first, and the data for the middle bits arrive last. This can
be segmented into three regions, and the observation provides us
with two insights: First, in region 2, where the CT data arrive last,
there is a necessity to employ high-speed prefix structures to ac-
commodate the critical path delay. Conversely, in regions 1 and 3,
where the data arrive earlier, there is no need for fast prefix struc-
tures. By leveraging the non-uniform arrival profile of regions 1 and
3, we can effectively optimize the area without compromising the
performance of the overall design. Previous work GOMIL [15] has
focused only on minimizing the area of the compressor tree and the
depth of the Carry Propagation Adder (CPA), while not exploiting
the non-uniform arrival profile. Other studies such as RL-MUL [29]
concentrated solely on the compressor tree while overlooking the
significant impact that CPA optimizations can have on the overall
performance of multipliers.

In contrast, a more effective strategy involves targeted optimiza-
tions of the CPA based on the CT output profile. While there are
existing works on non-uniform arrival adders, such as the hybrid
adder using a carry skip adder [30, 31, 32], and approaches that
transform non-uniform arrival times into logic depth constraints
for prefix graphs [20, 33]. However, logic depth provides a low fi-
delity of path delay, and node fanout can significantly impact path
delay[24], which is not considered in these approaches. To address
these limitations, we propose UFO-MAC, a unified framework for
the optimization of high-performance multipliers and MACs. UFO-
MAC not only adopts area-optimal CTs but also expands the de-
sign space to utilize ILP to optimize compressor assignment and
interconnection orders, which ensures effective area and delay op-
timization. For CPA design, UFO-MAC explicitly leverages the non-
uniform input arrival profile, adopting a linear timing model that
accounts for both fanout and logic depth. This model provides a
higher fidelity that guides the CPA optimization more effectively.
Starting from an area-efficient initial CPA structure, the framework

applies depth and fanout optimization to meet timing constraints,
thereby enhancing the overall performance of the adder.

In summary, the contributions of UFO-MAC are as follows:
• Wepropose UFO-MAC, a unified framework for the optimization
of multipliers and MACs, enhancing both area and delay metrics.
• We introduce area-optimal CT structures and extend the design
space to optimize the interconnect order of the compressor trees.
• We explicitly explore the non-uniform arrival profile for targeted
optimization of CPAs based on ourmax-path fanout timingmodel.
• Experimental results confirm that UFO-MAC optimized multipli-
ers and MACs exceed all baseline designs. The effectiveness of
these optimized designs has been further validated in practical
applications, including signal processing and AI acceleration.

2 Preliminaries
2.1 Multiplier Architecture

The multiplier architecture integrates three fundamental compo-
nents: a partial product generator (PPG), a compressor tree (CT) and
a carry propagate adder (CPA), as illustrated in Figure 2.

Partial Product Generator (PPG): The PPG generates partial
products (PPs) from multiplicand and multiplier. For an 𝑁 -bit mul-
tiplier, an AND gate-based PPG employs 𝑁 2 AND gates.These gates
produce PPs, which are shifted according to their bit positions to fa-
cilitate subsequent addition.

Compressor Tree (CT): The primary role of the CT involves
compressing the shifted partial products into two parallel rows for
parallel reduction. It incorporates multiple compression stages, pre-
dominantly utilizing 3:2 and 2:2 compressors, which are effectively
full adders and half adders, respectively. A 3:2 compressor at stage
𝑖 , column 𝑗 takes three inputs and outputs a sum to column 𝑗 and
a carry-out to column 𝑗 + 1 in the next stage 𝑖 + 1. Similarly, a 2:2
compressor at the same stage and column processes two inputs, de-
livering a sum and a carry-out to the subsequent column and stage.

Carry Propagate Adder (CPA): The CPA aggregates the two
rows of compressed PPs from the CT to produce the final product.
It generally employs a prefix adder for fast computation.

2.2 Prefix Structure-based CPA
The generate function (𝑔𝑖) and propagate (𝑝𝑖) functions are used

in the prefix adders. The generate function is the AND operation,
and the propagate function is the XOR operation of the input bits,
defined as:

𝑔𝑖 = 𝑎𝑖 · 𝑏𝑖 , 𝑝𝑖 = 𝑎𝑖 ⊕ 𝑏𝑖 . (1)
The 𝑝𝑔 functions can be extended tomultiple bits and 𝑃[𝑖:𝑗] ,𝐺 [𝑖:𝑗]

(𝑖 ≥ 𝑗) are defined as:

𝑃[𝑖:𝑗] =

{
𝑝𝑖 if 𝑖 = 𝑗,

𝑃[𝑖:𝑘] · 𝑃[𝑘−1:𝑗] otherwise,
(2)

𝐺 [𝑖:𝑗] =

{
𝑔𝑖 if 𝑖 = 𝑗,

𝐺 [𝑖:𝑘] + 𝑃[𝑖:𝑘] ·𝐺 [𝑘−1:𝑗] otherwise,
(3)

The associative operation for the group generate and propagate
(𝐺, 𝑃) is defined using the operator ◦:

(𝐺, 𝑃)[𝑖:𝑗] = (𝐺, 𝑃)[𝑖:𝑘] ◦ (𝐺, 𝑃)[𝑘−1:𝑗] . (4)

The computation of the sum and carry signals is given by:

𝑠𝑖 = 𝑝𝑖 ⊕ 𝑐𝑖−1, 𝑐𝑖 = 𝐺 [𝑖:0] + 𝑃[𝑖:0] · 𝑐𝑖𝑛 . (5)
2

6 5 4 3 2 1 0

Stage 0

Stage 1

×

A(N-bit) B(N-bit)

Compressor Tree

3:2 Compressor
A
B

𝐶in

𝐶𝑜𝑢𝑡

S

2:2 Compressor
A

B

𝐶𝑜𝑢𝑡

S

Partial Product

Generation

6 5 4 3 2 1 0

6 5 4 3 2 1 0

Carry-Propagate Adder

i:k k-1:j

i:j

𝐺𝑖:𝑘

𝑃𝑖:𝑘

𝐺𝑘−1:𝑗

𝑃𝑘−1:𝑗

𝐺𝑖:𝑗

𝑃𝑖:𝑗

𝐺𝑖:𝑘

𝑃𝑖:𝑘

𝐺𝑘−1:𝑗

𝐺𝑖:𝑗

i:k k-1:j

i:j

𝑖4 𝑖2

𝑎1

𝑎2

𝑎3

𝑎4

𝑏1

𝑏2 𝑏3

𝑏4

𝑏5

𝐹𝑏𝑙𝑎𝑐𝑘 = 0
𝐹𝑏𝑙𝑢𝑒 = 3
𝑁𝑏𝑙𝑎𝑐𝑘 = 1
𝑁𝑏𝑙𝑢𝑒 = 2

(𝑎) (𝑏)

Depth-opt Fanout-opt

𝑖0𝑖1𝑖2𝑖3

𝑥

𝑧 𝑦

𝑚 𝑛
𝑥

𝑧

𝑦

𝑖1𝑖2𝑖3 𝑖0

𝑥

𝑧 𝑦

𝑚

𝑖1𝑖2𝑖3 𝑖0

𝐹𝑏𝑙𝑎𝑐𝑘 = 0
𝐹𝑏𝑙𝑢𝑒 = 4
𝑁𝑏𝑙𝑎𝑐𝑘 = 0
𝑁𝑏𝑙𝑢𝑒 = 3

... …

𝑎0 𝑏0

𝑔0 𝑝0

𝑎5 𝑏5

𝑔5 𝑝5

𝑐𝑜𝑢𝑡

𝑠0

... …

𝑔5 𝑔4

𝑠5 𝑠1

𝑔0

𝑖0𝑖1𝑖2𝑖3𝑖4𝑖5

Figure 2: Multiplier Architecture

6 5 4 3 2 1 0

A(N-bit) B(N-bit)

Partial Product Generation

Partial Products

Compressor Tree

Carry Propagate Adder

Multiplier

Accumulator

C(2N-bit)

Final Result

7 6 5 4 3 2 1 0

A(N-bit) B(N-bit)

Partial Product Generation

Fused Partial

Products

Compressor Tree

Carry Propagate Adder

C(2N-bit)

Final Result

Conventional MAC Fused MAC

Figure 3: Fused MAC Architecture

2.3 Fused MAC Architecture
As illustrated in Figure 3, the fused multiply-accumulator (fused

MAC) architecture integrates the accumulation directly into the com-
pressor tree, eliminating the separate adder stage typically found
in conventional MAC units. The fusion of the accumulator signif-
icantly enhances both area efficiency and delay. In this work, we
employ the fused MAC architecture to demonstrate its advantages
in reducing critical path delay and area, which improves overall ef-
ficiency.

3 Optimization of Compressor Tree
3.1 Two Compression Problems

The CT outputs two rows of compressed partial products, which
are fed into CPA to calculate final product results. So each bit col-
umn should output 1 or 2 PPs after compression. In column 𝑗 , the
total number needed to compress is the initial PPs and the carries
from column 𝑗 − 1 and then compress them to 1 or 2 PPs to produce
the final 2 rows of PPs. This requirement frames our objective in
CT optimization: to add the PPs into two rows with minimal cost, a
challenge formally described as the Two Compression Problems.

Algorithm 1 Compressor Tree (CT) Generation
1: Input: 𝑃𝑃 𝑗 for each column 𝑗 , where 𝑗 = 0 to 2𝑁 − 1
2: Output: 𝐹 𝑗 and𝐻 𝑗 , the counts of 3:2 and 2:2 comps per column
3: Initialize 𝐹 𝑗 = 0 and 𝐻 𝑗 = 0 for all 𝑗
4: for 𝑗 = 0 to 2𝑁 − 1 do
5: if 𝑗 = 0 then
6: Adjust 𝐶−1 = 0 ⊲ Initial carry for the first column
7: end if
8: if (𝑃𝑃 𝑗 +𝐶 𝑗−1) is even then
9: 𝐹 𝑗 ← (𝑃𝑃 𝑗 +𝐶 𝑗−1 − 2)/2
10: else ⊲ Odd number of PPs
11: 𝐻 𝑗 ← 1 ⊲ Adjust for parity
12: 𝐹 𝑗 ← (𝑃𝑃 𝑗 +𝐶 𝑗−1 − 3)/2
13: end if
14: end for

Problem:Given an array of initial partial product counts in 2𝑁 −
1 columns, denote the number of partial products in column 𝑗 as
𝑃𝑃 𝑗 . The task is to compress 𝑃𝑃 𝑗 + 𝐶 𝑗−1 (where 𝐶 𝑗−1 represents
the carries from column 𝑗 − 1) into a maximum of two outputs per
column with minimum total cost.

In the UFO-MAC framework, we initially determine the optimal
counts of the 3:2 and 2:2 compressors for each column. We then
assign these compressors to stages using ILP, and optimize the in-
terconnection orders between compressors to improve critical path
delay. These steps are detailed in Section 3.2, Section 3.3, and Sec-
tion 3.5.

3.2 CT Structure Generation

As described in Section 2.1, a 3:2 compressor generates one sum
in the current column and passes 1 PP (carry) to the next, which
reduces the total number of PPs. While a 2:2 compressor is not as
efficient as a 3:2 compressor in terms of reducing the total number
of PPs. For instance, in column 𝑗 , to complete the compression of
one PP only by 2:2 compressors, we need to pass it to column 2𝑁
and require 2𝑁 − 𝑗 2:2 compressors. Therefore, we use as few 2:2
compressors as possible for more efficient compression. It is evident
that compressing PPs to a single bit incurs higher costs compared to
two bits, as more compression requires additional compressors. It is
ideal to use only 3:2 compressors in columns with even PP numbers
(𝑃𝑃 𝑗 + 𝐶 𝑗−1 is even), since each 3: 2 compressor reduces 2 PPs in
the current column. However, in columns with odd values 𝑃𝑃 𝑗 +
𝐶 𝑗−1, it is not feasible to achieve a final count of two using only 3:2
compressors due to parity constraints. To adjust parity, we use 2:2
compressors in columns with odd PP numbers [7]. We summarize
our CT generation process for each column 𝑗 in Algorithm 1.

The gate-level structures of the 3:2 and 2:2 compressors are illus-
trated in Figure 2. In CMOS technology, the AND and OR logic is
typically implemented with NAND and OAI gates. Thus, the area of
a 3:2 compressor is typically 1.5 times that of a 2:2 compressor. For
a column with 𝑀 bit total PPs, the minimum number of compres-
sion stages required is given by

⌈
log 3

2

(
𝑀
2

)⌉
[1]. As described above,

we only allow for no more than one 2:2 compressor in each column.
Considering both area and stage requirements and the 2:2 compres-
sor number constraints, we next demonstrate that our CT design is
optimal, minimizing both the area and the number of stages. First,
we prove that our approach has a minimum CT area.

3

PRoof. Let 𝐹 and 𝐻 be the numbers of 3:2 and 2:2 compressors,
respectively, in our supposed optimal design with an area of 3𝐹 +2𝐻 .
Assume that there exists a compressor tree that uses fewer 3:2 or 2:2
compressors and still meets the two-output maximum per column.
Removing𝑚 3:2 compressors would result in 2 + 2𝑚 outputs in the
affected columns, exceeding the limit of two outputs per column and
thus violating the constraints of the problem. Similarly, removing a
single 2:2 compressor from the columns where exactly one is used
would leave 3 outputs (2 + 1), again violating the constraints of the
problem. Substituting one 2:2 compressor with one 3:2 compressor
would result in an area of 3𝐹 + 2𝐻 + 1, thereby increasing the total
area. Replacing 𝑥 3:2 compressors with 𝑦 2:2 compressors, where
2𝑥 ≤ 𝑦, results in an area change of 3𝐹 +2𝐻 −3𝑥 +2𝑦. This increases
the area since 3𝐹 + 2𝐻 − 3𝑥 + 2𝑦 ≥ 3𝐹 + 2𝐻 + 𝑥 , thus proving by
contradiction that our original design is optimal by minimizing the
compressor area without violating any design constraints. □

Next, we prove that our approach has a minimum stage number:

PRoof of Minimum CompRessoRs peR Column. For any given col-
umn 𝑗 in a compressor tree, let 𝑝𝑝 𝑗 + 𝐶 𝑗−1 be the total number of
partial products and carries to be compressed. Assume our solution,
which uses 𝐹 𝑗 3:2 compressors and𝐻 𝑗 2:2 compressors, and suppose
that there is a feasible solution with fewer compressors. Reducing
any 3:2 compressor by𝑚 would result in excess outputs (more than
two). Similarly, reducing a 2:2 comp, since ℎ 𝑗 ≤ 1, would result in
more than two outputs for that column, violating the two output
constraint. Adjusting the compressor configuration by replacing𝑚
3:2 comps with 𝑛 2:2 compressors to maintain constraints would
require 𝑛 = 2𝑚. This replacement results in a compressor count
of 𝑓𝑗 + ℎ 𝑗 + 𝑚, which is greater than the original count, proving
by contradiction that our compressor allocation for each column is
minimal. □

PRoof of Minimum Stages in the CompRessoR TRee. Having es-
tablished that each column is compressed using the minimum num-
ber of compressors, it follows that the carry propagated to the next
column is also minimized. Each additional compressor could poten-
tially introduce an additional stage of the next column due to prop-
agation of its carry. Since our arrangement of compressors is mini-
mal for each column, and no unnecessary carries are generated, the
entire tree achieves a minimal stage count. The number of stages
required can be calculated using the formula

⌈
log 3

2

(
𝑁
2

)⌉
, where 𝑁

combines 𝑝𝑝 𝑗 and 𝐶 𝑗−1. □

Previous work such as GOMIL [15] utilizes the one- or two-bit
output from the CT to reduce the need for 𝑝𝑔 generation logic in the
CPA. However, the reduction in 𝑝𝑔 logic leads to an additional 3:2
compressor in the CT, which does not result in overall area savings.
This is because the 𝑝𝑔 generation logic is typically implemented us-
ing one NOR and two NAND gates and occupies less area than a 3:2
compressor.

3.3 Compressor Assignment
Building on the optimal counts of the 3:2 and 2:2 compressors

for each column by Algorithm 1, we introduce a method to assign
these compressors to specific stages, thus achieving a compressor
tree structure with aminimized stage count. Previous efforts such as
GOMIL [15] do not account for the number of stages, and heuristic
assignments in RL-MUL [29] potentially result in suboptimal stage

0.45 0.46 0.47 0.48 0.49 0.50
Delay distribution (ns)

0

2000

4000

C
ou

nt

Figure 4: Critical path delay distribution of 10000 random in-
terconnect order with one same CT stage structure.

utilization. In contrast, our approach employs an ILP model to de-
termine the stage assignments that minimize the total number of
CT stages.

We define 𝑆𝑙𝑖𝑐𝑒𝑖, 𝑗 as the set of compressors located at stage 𝑖 and
column 𝑗 in the compressor tree. And we set a stage limit, 𝑠𝑡𝑎𝑔𝑒𝑚𝑎𝑥 .
For each 𝑆𝑙𝑖𝑐𝑒𝑖, 𝑗 , the assigned numbers of 3:2 and 2:2 compressors
are represented by 𝑓𝑖, 𝑗 and ℎ𝑖, 𝑗 , respectively. We ensure that the
total compressors across all stages match the given counts from Al-
gorithm 1 with the following constraints:

stage_max∑
𝑖=0

𝑓𝑖, 𝑗 = 𝐹 𝑗 ∀𝑗 (6)

stage_max∑
𝑖=0

ℎ𝑖, 𝑗 = 𝐻 𝑗 ∀𝑗 (7)

We define 𝑝𝑝𝑖, 𝑗 as the number of PPs at 𝑆𝑙𝑖𝑐𝑒𝑖, 𝑗 . The PPs within each
slice are influenced by the outputs from the previous stage and the
carries from the preceding column, leading to the constraint:
𝑝𝑝𝑖, 𝑗 = 𝑝𝑝𝑖−1, 𝑗−2𝑓𝑖, 𝑗−ℎ𝑖, 𝑗 +𝑓𝑖−1, 𝑗−1+ℎ𝑖−1, 𝑗−1, ∀𝑖 > 0,∀𝑗 > 0 (8)
Furthermore, the number of PPs must be sufficient to accommodate
the compressors within a slice:

3𝑓𝑖, 𝑗 + 2ℎ𝑖, 𝑗 ≤ 𝑝𝑝𝑖, 𝑗 , ∀𝑖, 𝑗 (9)
Tominimize the total number of stages, 𝑆 , we use a sufficiently large
constant 𝑀 and binary auxiliary variables 𝑦𝑖, 𝑗 to indicate whether
any compressor is placed at 𝑆𝑙𝑖𝑐𝑒𝑖, 𝑗 :

𝑆 ≥ 𝑖 · 𝑦𝑖, 𝑗 , ∀𝑖, 𝑗 (10)

𝑀 · 𝑦𝑖, 𝑗 ≥ 𝑓𝑖, 𝑗 + ℎ𝑖, 𝑗 , ∀𝑖, 𝑗 (11)
Our primary objective is to reduce the number of stages in the com-
pressor tree:

min 𝑆 (12)
By incorporating boundary conditions, this formulation allows for
deriving the CT structure with the minimum number of stages.

3.4 Impact of Interconnection Order
The interconnection order between compressors can affect the

critical path delay of the CT, which represents a design space that
previous works have often overlooked. As illustrated in Figure 2, for
a 3:2 compressor, the path from ports 𝐴 and 𝐵 to port 𝑆𝑢𝑚 involves
two XOR gates, whereas the path from 𝐶𝑖𝑛 to 𝐶𝑜𝑢𝑡 passes through
AND and OR logic, implemented by NAND and OAI gates. In par-
ticular, the delay through two XOR gates is approximately 1.5 times
that of the NAND and OAI combination. Furthermore, the delay of
2:2 compressors is less than that of 3:2 compressors since they only
pass through one XOR or one AND gate. To demonstrate the impact
of interconnection order, we assign 10,000 random interconnection

4

1111

Initial PPs

CT generation 𝐹

𝐻

: [0 1 1 1 0 0 0]

: [0 0 1 1 1 0 0]

Stage 0

Stage 1

6 5 4 3 2 1 0

6 5 4 3 2 1 0
Not used

Interconnect

ILP solver

Assignment

ILP solver

Synthesis

Timing Constraint

FDC model

Assign bit-wise

FDC constraints

Timing driven

transformations

Optimized CPA

𝑖1𝑖2𝑖3 𝑖0𝑖4𝑖5

Initial CPA

𝑖1𝑖2𝑖3 𝑖0𝑖4𝑖5

Input arrival profile

𝑆𝑙𝑖𝑐𝑒1,3

STA

Compressor Tree Optimization

Carry Propagate Adder Optimization

Figure 5: UFO-MAC framework. The framework first generates optimal CT structures and then performs timing-driven opti-
mizations on the CPA based on a non-uniform arrival profile to achieve area-delay efficiency.

𝑠

𝑠

𝑢𝑖,𝑗,0

𝑢𝑖,𝑗,1

𝑢𝑖,𝑗,2

𝑢𝑖,𝑗,3

𝑢𝑖,𝑗,4

𝑢𝑖,𝑗,5

𝑢𝑖,𝑗,6Not used

1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

Interconnect matrix 𝒛𝒊,𝒋

𝑎

𝑏

𝑐𝑖𝑛

𝑐𝑜𝑢𝑡

𝑎

𝑏

𝑐𝑖𝑛
To 𝑆𝑙𝑖𝑐𝑒 𝑖+1,𝑗+1

𝑐𝑜𝑢𝑡

From 𝑆𝑙𝑖𝑐𝑒𝑖−1,𝑗−1

From 𝑆𝑙𝑖𝑐𝑒𝑖−1,𝑗

To 𝑆𝑙𝑖𝑐𝑒𝑖+1,𝑗

𝑣𝑖,𝑗,0

𝑣𝑖,𝑗,1

𝑣𝑖,𝑗,2

𝑣𝑖,𝑗,3

𝑣𝑖,𝑗,4

𝑣𝑖,𝑗,5

𝑣𝑖,𝑗,6

Figure 6: Interconnection order slice example

orders to the same CT structure and then synthesize the 10,000 CTs
with the same constraints. As shown in Figure 4, the synthesized
results indicated that the delay of the CT varied by over 10%.

3.5 Interconnection Order Optimization
We propose an ILP-based approach to optimize the interconnec-

tion orders of compressors within the compressor tree. Considering
a 3:2 compressor, we assume that the arrival times of the input at
ports𝐴, 𝐵, and𝐶𝑖𝑛 are 𝑎,𝑏, and𝑑 respectively.The output timing for
the sum and carry can then be determined by the following equa-
tions:

𝑠 = max(𝑎 +𝑇𝑎𝑠 , 𝑏 +𝑇𝑏𝑠 , 𝑑 +𝑇𝑐𝑠) (13)
𝑐 = max(𝑎 +𝑇𝑎𝑐 , 𝑏 +𝑇𝑏𝑐 , 𝑑 +𝑇𝑐𝑐) (14)

Here, 𝑇𝑥𝑦 represents the delay from input 𝑥 to output 𝑦. We trans-
form the maximum operations into linear constraints:

𝑠 ≥ 𝑎 +𝑇𝑎𝑠 , 𝑠 ≥ 𝑏 +𝑇𝑏𝑠 , 𝑠 ≥ 𝑑 +𝑇𝑐𝑠 (15)

𝑐 ≥ 𝑎 +𝑇𝑎𝑐 , 𝑐 ≥ 𝑏 +𝑇𝑏𝑐 , 𝑐 ≥ 𝑑 +𝑇𝑐𝑐 (16)
Similarly, these constraints are applicable to 2:2 compressors, with
corresponding adjustments for their specific input and output tim-
ing characteristics.

As illustrated in Figure 6, the PPs in 𝑆𝑙𝑖𝑐𝑒𝑖, 𝑗 originate from two
sources: the sums and unused PPs from 𝑆𝑙𝑖𝑐𝑒𝑖−1, 𝑗 , and the carries
from 𝑆𝑙𝑖𝑐𝑒𝑖−1, 𝑗−1. For 𝑆𝑙𝑖𝑐𝑒𝑖, 𝑗 , which receives𝑚 PPs in total, we de-
note the PPs of 𝑆𝑙𝑖𝑐𝑒𝑖, 𝑗 as a source vector 𝑢𝑖, 𝑗 , representing the data
arrival times:

[𝑝𝑝𝑖, 𝑗,0, 𝑝𝑝𝑖, 𝑗,1, . . . , 𝑝𝑝𝑖, 𝑗,𝑚−1] (17)

Consequently, PPs can connect to compressor ports or directly pass
to 𝑆𝑙𝑖𝑐𝑒𝑖+1, 𝑗 . We assign dummy ports for these PPs, which are not
used and left to 𝑆𝑙𝑖𝑐𝑒𝑖+1, 𝑗 . The arrival times of these connections are
denoted in the sink vector 𝑣𝑖, 𝑗 :

[𝑝𝑜𝑟𝑡𝑖, 𝑗,0, 𝑝𝑜𝑟𝑡𝑖, 𝑗,1, . . . , 𝑝𝑜𝑟𝑡𝑖, 𝑗,𝑚−1] (18)
The task is to optimize the bijective mapping between the source
vector 𝑢𝑖, 𝑗 and the sink vector 𝑣𝑖, 𝑗 for each 𝑆𝑙𝑖𝑐𝑒𝑖, 𝑗 . To model the
bijection between the source and sink vectors in each slice, we in-
troduce a𝑚 ×𝑚 binary matrix 𝑧𝑖, 𝑗 . Each entry 𝑧𝑖, 𝑗,𝑢,𝑣 = 1 indicates
that the source 𝑢 is connected to the sink 𝑣 . The formulation of this
relationship is given by:

𝑣 = 𝑢 if and only if 𝑧𝑖, 𝑗,𝑢,𝑣 = 1 (19)
To transform the constraints in Equation (19) linearly, we employ a
sufficiently large constant 𝑍 , and linear constraints are as follows:

𝑣 − 𝑢 ≤ 𝑍 · (1 − 𝑧𝑖, 𝑗,𝑢,𝑣); 𝑢 − 𝑣 ≤ 𝑍 · (1 − 𝑧𝑖, 𝑗,𝑢,𝑣) (20)
The following constraints ensure that each input is connected to
exactly one output and vice versa:

𝑚−1∑
𝑣=0

𝑧𝑖, 𝑗,𝑢,𝑣 = 1, ∀𝑢;
𝑚−1∑
𝑢=0

𝑧𝑖, 𝑗,𝑢,𝑣 = 1, ∀𝑣 (21)

Then combined with Equations (15) and (16), we can get the data
arrival time of every partial product and every compressor port. To
minimize the critical path in the compressor tree for multipliers of
𝑁 bits, the objective is to reduce the longest delay among the final
outputs. We define𝑀 as the maximum delay in any of the columns
from 0 to 2𝑁−1.The goal is formulated asminimizing thismaximum
delay, represented mathematically by:

𝑀 ≥ 𝑡 𝑗,0, 𝑀 ≥ 𝑡 𝑗,1 for all 𝑗 ∈ {0, 2𝑁 − 1} (22)

min 𝑀 (23)
The ILP formulation can handle all initial partial product shapes,
and we can easily extend to optimization of CT of fused MAC.

4 Optimization of CPA
Building upon the optimized compressor tree structures, we have

developed a refined approach for CPA design. This method effec-
tively utilizes the non-uniform arrival profile of the CPA to achieve
area-delay efficiency. Our comprehensive framework, as shown in

5

6 5 4 3 2 1 0

Stage 1

Stage 2

×

A(N-bit) B(N-bit)

Compressor Tree

3:2 Compressor
A
B

𝐶in

𝐶𝑜𝑢𝑡

S

2:2 Compressor

A

B

𝐶𝑜𝑢𝑡

S

... …

𝑎1 𝑏1

𝑔1 𝑝1

𝑎6 𝑏6

𝑔6 𝑝6

𝑐𝑜𝑢𝑡

Partial Product

Generation

6 5 4 3 2 1 0

6 5 4 3 2 1 0

𝑠1

... …

𝑔6 𝑔5

𝑠6 𝑠2

𝑔1

Carry-Propagate Adder

i:k k-1:j

i:j
𝐺𝑖:𝑘

𝑃𝑖:𝑘

𝐺𝑘−1:𝑗

𝑃𝑘−1:𝑗

𝐺𝑖:𝑗

𝑃𝑖:𝑗

𝐺𝑖:𝑘

𝑃𝑖:𝑘

𝐺𝑘−1:𝑗

𝐺𝑖:𝑗

i:k k-1:j

i:j

𝑖1𝑖2𝑖3𝑖4𝑖5𝑖6

𝑖4 𝑖2

𝑎1

𝑎2

𝑎3

𝑎4

𝑏1

𝑏2 𝑏3

𝑏4

𝑏5

𝐹𝑏𝑙𝑎𝑐𝑘 = 0
𝐹𝑏𝑙𝑢𝑒 = 3
𝑁𝑏𝑙𝑎𝑐𝑘 = 1
𝑁𝑏𝑙𝑢𝑒 = 2

(𝑎) (𝑏)

Depth-opt Fanout-opt

𝑖0𝑖1𝑖2𝑖3

𝑥

𝑧 𝑦

𝑚 𝑛
𝑥

𝑧

𝑦

𝑖1𝑖2𝑖3 𝑖0

𝑥

𝑧 𝑦

𝑚

𝑖1𝑖2𝑖3 𝑖0

𝐹𝑏𝑙𝑎𝑐𝑘 = 0
𝐹𝑏𝑙𝑢𝑒 = 4
𝑁𝑏𝑙𝑎𝑐𝑘 = 0
𝑁𝑏𝑙𝑢𝑒 = 3

Figure 7: Sub-prefix trees.

Feature 𝑅2 Score MAPE
logic depth 0.541 9.30%

mpfo 0.469 10.91%
FDC 0.816 4.63%

Figure 8: Timing Model.

Figure 5, integrates these optimizations into the design process.This
section will detail our methods for CPA optimization.

4.1 Non Uniform Arrival Profile of CPA
As illustrated in Figure 1, the carry propagation adder presents a

non-uniform arrival profile, presenting unique challenges in design
and optimization compared to CPAs with uniform profiles. Leverag-
ing the variance in data arrival times, we aim to create area-delay
efficient adders that conform to timing constraints. Our refined op-
timization framework explicitly exploits non-uniform arrival times.
Initially, area-efficient adder structures are selected, followed by
timing-driven transformations to meet the constraints.

TheCPA’s arrival profile is segmented into three regions as shown
in Figure 1:

Region 1:With a “positive slope”, where faster adders are unnec-
essary, we employ a Ripple Carry Adder (RCA) suitable for gradual
arrival times.

Region 2: Known as the flat region with the latest data arrivals,
necessitating fast adder structures like the Sklansky structure [16].

Region 3: Characterized by a “negative slope” in which data at
the MSB end arriving first. To align with this “negative slope”, we
use a Carry Increment Adder [20] as the initial structure.

The initial structure effectively utilizes the non-uniform profile
to optimize both area and delay across different regions of the CPA.

4.2 Timing Modeling for Prefix Adders
Following the selection of initial area-efficient structures, we re-

fine them based on timing constraints. To ensure that each bit’s
critical path in the CPA meets timing constraints, we extract a sub-
prefix tree from a specific bit position to estimate and optimize the
critical path delay for that bit. Figure 7 shows trees extracted from
bit positions 1 and 3 of the CPA in Figure 2. Once the prefix tree
is extracted, we can estimate the delay for further optimizations.
High-fidelity timing modeling is crucial to achieving accurate delay
estimations. Many previous works have used logic depth as a tim-
ing model [20, 33, 15]. The max-path-fanout (mpfo) was introduced
in [27], which accumulates the fanout count of each node along a
path, and does not take into account the logic depth. Recognizing
that path delay is influenced by both logic depth and fanout, and
that existing models overlook the distinct node types shown in Fig-
ure 2, we introduce the fanout depth combination (FDC). This
refined model integrates path depth, fanout, and node types to offer
a more accurate and comprehensive timing prediction, addressing
the limitations of previous models.

We apply the simplified logic effort method[34] for timing esti-
mation as follows:

𝑑 = 𝑔 × 𝑓 + 𝑝 (24)
where 𝑔 is the logic effort, 𝑓 the fanout, and 𝑝 the intrinsic delay
of the gate. This model is adapted for different types of nodes, we
denote𝑔𝑏𝑙𝑎𝑐𝑘 , 𝑝𝑏𝑙𝑎𝑐𝑘 and𝑔𝑏𝑙𝑢𝑒 , 𝑝𝑏𝑙𝑢𝑒 as the logic effort and intrinsic
delay of black and blue nodes, respectively. Black nodes encompass
AND-OR logic and AND logic, implemented through interleaving

6 5 4 3 2 1 0

Stage 1

Stage 2

×

A(N-bit) B(N-bit)

Compressor Tree

3:2 Compressor
A
B

𝐶in

𝐶𝑜𝑢𝑡

S

2:2 Compressor

A

B

𝐶𝑜𝑢𝑡

S

... …

𝑎1 𝑏1

𝑔1 𝑝1

𝑎6 𝑏6

𝑔6 𝑝6

𝑐𝑜𝑢𝑡

Partial Product

Generation

6 5 4 3 2 1 0

6 5 4 3 2 1 0

𝑠1

... …

𝑔6 𝑔5

𝑠6 𝑠2

𝑔1

Carry-Propagate Adder

i:k k-1:j

i:j
𝐺𝑖:𝑘
𝑃𝑖:𝑘

𝐺𝑘−1:𝑗

𝑃𝑘−1:𝑗

𝐺𝑖:𝑗

𝑃𝑖:𝑗

𝐺𝑖:𝑘
𝑃𝑖:𝑘

𝐺𝑘−1:𝑗

𝐺𝑖:𝑗

i:k k-1:j

i:j

𝑖1𝑖2𝑖3𝑖4𝑖5𝑖6

𝑖4 𝑖2

𝑎1

𝑎2
𝑎3

𝑎4

𝑏1

𝑏2 𝑏3
𝑏4

𝑏5

Depth: 3

Mpfo: 3

Depth: 3

Mpfo: 4

(𝑎) (𝑏)

Depth-opt Fanout-opt

𝑖0𝑖1𝑖2𝑖3

𝑥

𝑧 𝑦

𝑚 𝑛
𝑥

𝑧

𝑦

𝑖1𝑖2𝑖3 𝑖0

𝑥

𝑧 𝑦

𝑚

𝑖1𝑖2𝑖3 𝑖0

Figure 9: Example of two optimization transformations.

AOI+NAND and OAI+NOR. In contrast, blue nodes are implemented
using only AOI or OAI cells. For black nodes, the delay is:

𝑑𝑏𝑙𝑎𝑐𝑘 = 𝑔𝑏𝑙𝑎𝑐𝑘 × (𝑓𝑏𝑙𝑎𝑐𝑘 + 𝑓𝑏𝑙𝑢𝑒) + 𝑝𝑏𝑙𝑎𝑐𝑘 (25)
where 𝑓𝑏𝑙𝑎𝑐𝑘 and 𝑓𝑏𝑙𝑢𝑒 are the fanouts to black and blue nodes, re-
spectively. Blue nodes, typically final level nodes only driving a sin-
gle sum logic, making their delay a constant:

𝑑𝑏𝑙𝑢𝑒 = 𝑔𝑏𝑙𝑢𝑒 × 𝑓𝑠𝑢𝑚 + 𝑝𝑏𝑙𝑢𝑒 (26)
where 𝑓𝑠𝑢𝑚 is the fanout to sum logic and is set to one. By integrat-
ing these with Equations (25) and (26), the critical path delay for a
tree starting from bit 𝑖 can be represented as:
𝑑𝑖 = 𝑘0 × 𝐹𝑏𝑙𝑎𝑐𝑘 + 𝑘1 × 𝐹𝑏𝑙𝑢𝑒 + 𝑘2 × 𝑁𝑏𝑙𝑎𝑐𝑘 + 𝑘3 × 𝑁𝑏𝑙𝑢𝑒 + 𝑏 (27)

Here, 𝑘0, 𝑘1, 𝑘2, 𝑘3, and 𝑏 are coefficients that can be determined to
fit the model. Examples of FDC features are shown in highlighted
paths in Figure 7.

To determine the maximum depth, mpfo, and FDC in a tree con-
sisting of 𝑛 nodes, the computational complexity for each method
is𝑂 (𝑛). To validate the fidelity of FDC, we conducted linear regres-
sion analyses for the depthmodel, mpfo, and FDC, comparing the𝑅2
Score and Mean Absolute Percentage Error (MAPE).These analyzes
are based on 10,000 paths extracted from the open-source adder
dataset comprising 1100 adders from [27]. The results, presented in
Figure 8, show that by incorporating fanout and node types, FDC
significantly improves fidelity within the same computational com-
plexity.

4.3 Final Adder Optimization
Based on the optimized CT structure, the non-uniform arrival

time of the CPA is normalized to the FDC model scale, and max-
imum FDC constraints are set for each input bit based on timing
requirements (Section 4.2). Then iterative timing-driven optimiza-
tion is applied to meet these constraints, employing the depth-opt
and fanout-opt transformations illustrated in Figure 9.

Each prefix node 𝑝 has two fan-ins: the trivial fan-in (𝑡 𝑓), which is
vertically aligned and shares the same MSB, and the non-trivial fan-
in (𝑛𝑡 𝑓). We denote 𝑡 𝑓 (𝑦) and 𝑛𝑡 𝑓 (𝑦) as trivial and non-trivial fan-
ins of 𝑦. For example, in the prefix graph on the left side of Figure 9,
𝑡 𝑓 (𝑦) and 𝑛𝑡 𝑓 (𝑦) refer to 𝑖2 and 𝑥 , respectively.

Recognizing the influence of logic depth and fanout on path de-
lay, we propose two optimization strategies: depth optimization
(depth-opt) and fanout optimization (fanout-opt).While prior refine-
based works [19, 20] primarily focused on depth, the significance
of fanout optimization has often been neglected. Our approach ad-
dresses this oversight by balancing both aspects, effectively man-
aging the trade-offs between logic depth, node count, and fanout
for improved timing and area efficiency [34]. The specific rules for
implementing these transformations are detailed in Lines 19 to 23,
with the same principles applying to both depth-opt and fanout-opt.
The key distinction lies in the nodes targeted for optimization.

Our timing-driven prefix graph optimization strategy is described
inAlgorithm 2.The algorithm adjusts the prefix graph from theMSB

6

Algorithm 2 Timing-driven Prefix Graph Optimization
1: Input: Input arrival times 𝐴 𝑗 for each bit 𝑗 , timing constraints
𝐶 , initial prefix graph 𝐺 , FDC timing model

2: Output: Optimized prefix graph 𝐺 ′
3: Assign bit-wise FDC constraints 𝑐 𝑗 for each bit 𝑗
4: while all 𝑐 𝑗 are met and exist possible optimization do
5: for 𝑗 = 𝑀𝑆𝐵 to 𝐿𝑆𝐵 do ⊲ Iterate from MSB to LSB
6: if 𝑐 𝑗 are violated then
7: Extract sub-prefix tree 𝑇𝑗 starting from bit 𝑗
8: if Depth of 𝑇𝑗 > log2 (𝑁) then ⊲ check min depth
9: 𝑝 ← node with maximum depth in 𝑇𝑗
10: GRaphOpt(𝑝) ⊲ depth-opt
11: else
12: 𝑝 ← node with maximum siblings in 𝑇𝑗
13: GRaphOpt(𝑝) ⊲ fanout-opt
14: end if
15: end if
16: end for
17: end while
18: return𝐺 ′ ⊲ Return the optimized graph
19: procedure GRaphOpt(𝑝)
20: Create a new node 𝑠
21: 𝑛𝑡 𝑓 (𝑠) ← 𝑡 𝑓 (𝑛𝑡 𝑓 (𝑝)), 𝑛𝑡 𝑓 (𝑠) ← 𝑡 𝑓 (𝑛𝑡 𝑓 (𝑝))
22: 𝑡 𝑓 (𝑝) ← 𝑠 , 𝑛𝑡 𝑓 (𝑝) ← 𝑛𝑡 𝑓 (𝑛𝑡 𝑓 (𝑝))
23: end procedure

to the LSB to resolve timing violations(Line 4).The algorithm checks
each bit for timing constraints, and bits with timing violations, it
extracts the sub-prefix tree from the bit (Lines 6 and 7). For a pre-
fix tree that spans 𝑁 bits, the minimal depth is given by log2 (𝑁)
[35]. Depending on the depth of the tree, the optimization method
is chosen: If the tree depth exceeds log2 (𝑁) + 1 (plus 1 for nodes to
group 𝑃𝐺 from the LSB side), indicating depth inefficiency, depth
optimization is applied to reduce depth. Otherwise, if the depth is
already optimal or minimal, fanout optimization is performed to bal-
ance high fanout nodes in the tree (Lines 11 to 13). This process
continues iteratively until all bits meet the timing constraints or no
further optimizations are possible, ensuring that the prefix graph is
optimized for both area and delay.

5 Experimental Results
5.1 Setup

The proposed framework is implemented on a Linux platform
with a 2.0GHz Intel Xeon Gold 6338 CPU with 1024GB of mem-
ory and an NVIDIA RTX 4090 GPU. The obtained designs are func-
tionally correct which is verified by equivalence checking in Berk-
erly ABC [36]. For ILP solvers, we use the Gurobi Optimizer (ver-
sion 11.0) [37] and set the ILP runtime limit to 3,600 seconds with
128 threads for compressor assignment and interconnect order op-
timizations, and the detailed runtime is shown in Figure 13. For each
bitwidth configuration ofmultipliers andMACs,we use timing-driven,
area-driven, and trade-off strategies for CPA optimization in Algo-
rithm 2. Comparisons are drawn between compressor trees, multi-
pliers, and MACs generated by UFO-MAC and baseline approaches.
Our baselines include:

GOMIL[15]: An ILP-based global optimization method. Given
GOMIL’s special prefix node implementation, we execute ILP and
generate RTL code using the provided open-source C++ code and
set the ILP runtime to 10,000 seconds with 128 threads.

200 300 400

0.4

0.5

0.6

Area (μm2)

D
el
ay

(n
s)

1,000 1,300 1,600
0.6
0.7
0.8
0.9

Area (μm2)

RL-MUL[29] Commercial IP UFO-MAC

5,000 6,500

0.95
1

1.05
1.1

Area (μm2)
Figure 10: Pareto-frontiers of the synthesized results on com-
pressor trees. From left to right: 8-bit; 16-bit; 32-bit.

300 400 500
0.6
0.8
1

1.2
1.4

Area (μm2)

D
el
ay

(n
s)

1,500 2,000

1

1.5

Area (μm2)

GOMIL[15] RL-MUL[29] Commercial IP UFO-MAC

5,000 7,500
1.4

1.6

1.8

2

Area (μm2)
Figure 11: Pareto-frontiers of the synthesized results on mul-
tipliers. From left to right: 8-bit; 16-bit; 32-bit.

400 600

0.8
1

1.2
1.4

Area (μm2)

D
el
ay

(n
s)

1,5002,0002,500

1

1.5

2

Area (μm2)

GOMIL[15] RL-MUL[29] Commercial IP UFO-MAC

6,000 8,000
1.2
1.4
1.6
1.8
2

Area (μm2)
Figure 12: Pareto-frontiers of the synthesized results on
MACs. From left to right: 8-bit; 16-bit; 32-bit.

RL-MUL[29]: A state-of-the-art RL-based approach. We repro-
duce the RL framework, running it for 3,000 steps as specified in
RL-MUL. Given its focus solely on CT optimization, we follow the
original setting to use default adders from synthesis tools.

Commercial IP: We utilize 𝑦 = 𝑎 ∗ 𝑏 and 𝑦 = 𝑎 ∗ 𝑏 + 𝑐 style
RTL and commercial tools/IPs for synthesis. For compressor tree
comparisons, we instantiated commercial compressor tree IP in the
RTL.

All designs are synthesized by Synopsys Design Compiler (ver-
sion T-2022.03-SP1)[38]with theNanGate 45nmOpenCell Library[39]
and the compile_ultra command. To illustrate the trade-off among
the delay, power, and area in various scenarios, we sweep the tar-
get delay constraints from 0𝑛𝑠 to 2𝑛𝑠 to generate different netlists
covering different preferences.

5.2 Multiplier and MAC Comparison
Comparisons of compressor trees in Figure 10 include only RL-

MUL and commercial IP, as GOMIL’s compressor tree ismerged into
its RTL and cannot be exactly decoupled. The results demonstrate
that UFO-MAC outperforms all baselines. Multiplier results in Fig-
ure 11 reveal that UFO-MAC provides Pareto-optimal performance,
with improvements up to 14.9% in area and 11.3% in delay com-
pared to commercial multipliers. The comprehensive design space
exploration including compressor assignment, interconnection or-
der and non-uniform CPA optimization contribute significantly to
these improvements over GOMIL and RL-MUL. While GOMIL fo-
cuses only on optimizing the area of the compressor tree, result-
ing in sub-optimal delays due to neglect of stage and interconnect

7

Table 1: FIR filter comparison.

Constraint Method 8-bit 16-bit 32-bit
Freq (Hz) WNS (ns) Area (μm2) Power (mW) Freq (Hz) WNS (ns) Area (μm2) Power (mW) Freq (Hz) WNS (ns) Area (μm2) Power (mW)

Area-driven

GOMIL[15]

660M

-0.4968 2354 1.5663

500M

-0.4990 9405 8.7474

400M

-0.4993 33804 36.584
RL-MUL[29] -0.3525 2318 1.4298 -0.4989 8752 8.7020 -0.5008 38022 44.264
Commercial IP -0.1805 2358 1.3137 -0.4989 8397 6.9946 -0.6533 31900 35.302
UFO-MAC -0.1188 1915 1.0934 -0.5707 6429 5.8867 -0.5486 29820 32.836

Timing-driven

GOMIL[15]

2G

-0.6287 3284 2.5342

1G

-0.6303 11112 12.004

660M

-0.5085 38167 46.405
RL-MUL[29] -0.5115 3067 2.3223 -0.4992 10572 10.872 -0.4999 38898 45.361
Commercial IP -0.5205 2919 2.0671 -0.4477 8518 7.3785 -0.4994 32183 35.715
UFO-MAC -0.4893 2733 1.7796 -0.4277 8394 7.4621 -0.4808 32127 35.980

Trade-off

GOMIL[15]

1G

-0.5468 2757 1.8771

660M

-0.4662 10373 10.615

500M

-0.4266 35372 40.126
RL-MUL[29] -0.2998 2718 1.9156 -0.3976 10215 10.315 -0.5039 38245 44.211
Commercial IP -0.3486 2495 1.4829 -0.3493 8418 7.0109 -0.4360 31510 34.551
UFO-MAC -0.2623 2349 1.5419 -0.3137 7658 6.4801 -0.3883 31366 34.217

Table 2: Systolic array comparison.

Constraint Method 8-bit 16-bit
Freq (Hz) WNS (ns) Area (μm2) Power (mW) Freq (Hz) WNS (ns) Area (μm2) Power (mW)

Area-driven

GOMIL[15]

660M

-0.5102 168370 11.572

400M

-0.4976 559985 35.918
RL-MUL[29] -0.4239 135659 10.207 -0.5102 436095 41.480
Commercial IP -0.4684 136529 10.393 -0.4828 438526 40.506
UFO-MAC -0.4974 125334 9.2475 -0.4697 401782 35.762

Timing-driven

GOMIL[15]

2G

-0.9827 190381 12.193

1G

-0.9854 662801 44.912
RL-MUL[29] -0.7077 172810 11.873 -0.5856 609563 44.275
Commercial IP -0.6053 144137 11.357 -0.3375 467621 45.221
UFO-MAC -0.5946 138316 10.787 -0.1994 533072 40.164

Trade-off

GOMIL[15]

1G

-0.6842 178874 11.175

660M

-0.6611 611143 41.651
RL-MUL[29] -0.6955 141754 10.892 -0.0981 564192 43.515
Commercial IP -0.6941 141905 10.831 -0.0999 458647 45.077
UFO-MAC -0.6785 131083 9.5777 -0.0182 449184 36.205

considerations, it also lacks area efficiency due to its CPA optimiza-
tion objectives centered solely on the logic level. RL-MUL may suf-
fer from scalability issues, especially in larger bit-width scenarios.
MAC results in Figure 12 confirm that UFO-MAC achieves up to
18.1% reduction in area and 13.9% in delay compared to commercial
MACs.The fused MAC architecture, which merges the accumulator
into the partial product generation, offers substantial area and delay
savings by eliminating an extra adder stage.

5.3 Implementation in Functional Modules
To further validate the performance advantages of our frame-

work in larger-scale designs, we integrated themultipliers andMACs
from all approaches into more complex functional modules. Specif-
ically, multipliers are incorporated into 5-stage finite impulse re-
sponse (FIR) filters, commonly utilized in signal processing appli-
cations. MACs are applied to the implementation of two systolic
array designs that are commonly used in AI chips. Both designs
have 16 × 16 processing elements and the bit width is 8-bit and
16-bit, respectively1. These designs are synthesized under various
clock frequency constraints to assess area, timing, and trade-off sce-
narios. Results for the FIR filters are detailed in Table 1, and those
for systolic arrays in Table 2. It can be seen that when applying the
obtained multipliers and MACs to larger functional modules imple-
mentation, the improvement on delay, power, and area still persists.

6 Conclusion
This work has introduced UFO-MAC, a unified framework aimed

at enhancing the optimization of high-performance multipliers and
multiply-accumulators. Through the implementation of an optimal

1An optimized 32-bit systolic array implementation is not available. Hence no experi-
ments were conducted on it.

8bit 16bit 32bit
Bit width

100

102

Ti
m

e
(s

)

MUL Assignment
MUL Interconnect
MAC Assignment
MAC Interconnect

Figure 13: ILP runtime.

compressor tree and then the refinement of stage assignment along
with interconnection orders using ILP, coupled with the strategic
utilization of the non-uniform arrival profile of carry propagation
adders (CPA), UFO-MAC demonstrably surpasses both contempo-
rary benchmarks and commercial tools in performance. Experimen-
tal validation within FIR filter and systolic array configurations un-
derscores the framework’s capability to significantly reduce area
and delay, thereby achieving substantial performance improvements.
Future efforts may explore extending UFO-MAC’s methodologies
to floating-point multipliers and broader applications, such as data-
path designs within Processing Element (PE) arrays, enhancing its
utility in increasingly complex computing environments.

Acknowledgments
This work is supported in part by the Guangzhou-HKUST(GZ)

Joint Funding Program (No. 2023A03J0155) and Guangzhou Munici-
pal Science and Technology Project (Municipal Key Laboratory Con-
struction Project, Grant No.2023A03J0013).

8

References

[1] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on Electronic
Computers, vol. EC-13, no. 1, pp. 14–17, 1964.

[2] L. Dadda, “Some schemes for fast serial input multipliers,” in 1983 IEEE 6th Sym-
posium on Computer Arithmetic (ARITH), 1983, pp. 52–59.

[3] K. Bickerstaff, M. Schulte, and E. Swartzlander, “Reduced area multipliers,” in Pro-
ceedings of International Conference on Application Specific Array Processors (ASAP
’93), 1993, pp. 478–489.

[4] J. Fadavi-Ardekani, “M*n booth encoded multiplier generator using optimized
wallace trees,” IEEE TVLSI, vol. 1, no. 2, pp. 120–125, June 1993.

[5] N. Itoh, Y. Tsukamoto, T. Shibagaki, K. Nii, H. Takata, and H. Makino, “A 32/spl
times/24-bit multiplier-accumulator with advanced rectangular styled wallace-
tree structure,” in Proc. ISCAS, 2005, pp. 73–76 Vol. 1.

[6] X.-V. Luu, T.-T. Hoang, T.-T. Bui, and A.-V. Dinh-Duc, “A high-speed unsigned
32-bit multiplier based on booth-encoder and wallace-tree modifications,” in 2014
International Conference on Advanced Technologies for Communications (ATC 2014),
2014, pp. 739–744.

[7] V. Oklobdzija, D. Villeger, and S. Liu, “A method for speed optimized partial prod-
uct reduction and generation of fast parallel multipliers using an algorithmic ap-
proach,” IEEE Transactions on Computers, vol. 45, no. 3, pp. 294–306, 1996.

[8] C. Martel, V. Oklobdzija, R. Ravi, and P. Stelling, “Design strategies for optimal
multiplier circuits,” in Proceedings of the 12th Symposium on Computer Arithmetic,
1995, pp. 42–49.

[9] P. Stelling, C. Martel, V. Oklobdzija, and R. Ravi, “Optimal circuits for parallel
multipliers,” IEEE Transactions on Computers, vol. 47, no. 3, pp. 273–285, 1998.

[10] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Improving synthesis of compressor
trees on fpgas via integer linear programming,” in 2008 Design, Automation and
Test in Europe, 2008, pp. 1256–1261.

[11] M. Kumm and P. Zipf, “Pipelined compressor tree optimization using integer lin-
ear programming,” in Proc. FPL, 2014, pp. 1–8.

[12] M. Kumm, J. Kappauf, M. Istoan, and P. Zipf, “Resource optimal design of large
multipliers for fpgas,” in 2017 IEEE 24th Symposium on Computer Arithmetic
(ARITH), 2017, pp. 131–138.

[13] M. Kumm and J. Kappauf, “Advanced compressor tree synthesis for fpgas,” IEEE
Transactions on Computers, vol. 67, no. 8, pp. 1078–1091, 2018.

[14] A. Böttcher and M. Kumm, “Towards globally optimal design of multipliers for
fpgas,” IEEE Transactions on Computers, vol. 72, no. 5, pp. 1261–1273, 2023.

[15] W. Xiao, W. Qian, andW. Liu, “Gomil: Global optimization of multiplier by integer
linear programming,” in 2021 Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2021, pp. 374–379.

[16] J. Sklansky, “Conditional-sum addition logic,” IRE Transactions on Electronic Com-
puters, vol. EC-9, no. 2, pp. 226–231, 1960.

[17] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solution of a
general class of recurrence equations,” IEEE Transactions on Computers, vol. C-22,
no. 8, pp. 786–793, 1973.

[18] Brent and Kung, “A regular layout for parallel adders,” IEEE Transactions on Com-
puters, vol. C-31, no. 3, pp. 260–264, 1982.

[19] J. Fishburn, “A depth-decreasing heuristic for combinational logic; or how to con-
vert a ripple-carry adder into a carry-lookahead adder or anything in-between,”
in Proc. DAC, 1990, pp. 361–364.

[20] R. Zimmermann, “Non-heuristic optimization and synthesis of parallel-prefix
adders,” in International Workshop on Logic and Architecture Synthesis, 1996.

[21] Y.-C. Lin and J.-W. Hsiao, “A new approach to constructing optimal prefix circuits
with small depth,” in Proceedings International Symposium on Parallel Architectures,
Algorithms and Networks. I-SPAN’02, 2002, pp. 99–104.

[22] J. Liu, Y. Zhu, H. Zhu, C.-K. Cheng, and J. Lillis, “Optimum prefix adders in a
comprehensive area, timing and power design space,” in Proc. ASPDAC, 2007, pp.
609–615.

[23] S. Roy, M. Choudhury, R. Puri, and D. Z. Pan, “Towards optimal performance-area
trade-off in adders by synthesis of parallel prefix structures,” in Proc. DAC, 2013,
pp. 1–8.

[24] ——, “Towards optimal performance-area trade-off in adders by synthesis of par-
allel prefix structures,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 33, no. 10, pp. 1517–1530, 2014.

[25] ——, “Polynomial time algorithm for area and power efficient adder synthesis in
high-performance designs,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 35, no. 5, pp. 820–831, 2016.

[26] H. Geng, Y. Ma, Q. Xu, J. Miao, S. Roy, and B. Yu, “High-speed adder design space
exploration via graph neural processes,” IEEE TCAD, vol. 41, no. 8, pp. 2657–2670,
2022.

[27] Y. Ma, S. Roy, J. Miao, J. Chen, and B. Yu, “Cross-layer optimization for high speed
adders: A pareto driven machine learning approach,” IEEE TCAD, vol. 38, no. 12,
pp. 2298–2311, 2019.

[28] R. Roy, J. Raiman, N. Kant, I. Elkin, R. Kirby, M. Siu, S. Oberman, S. Godil, and
B. Catanzaro, “Prefixrl: Optimization of parallel prefix circuits using deep rein-
forcement learning,” in Proc. DAC, 2021, pp. 853–858.

[29] D. Zuo, Y. Ouyang, and Y. Ma, “Rl-mul: Multiplier design optimization with deep
reinforcement learning,” in 2023 60th ACM/IEEE Design Automation Conference
(DAC), 2023, pp. 1–6.

[30] P. F. Stelling and V. Oklobdzija, “Design strategies for the final adder in a parallel
multiplier,” in Proceedings of the 29th Asilomar Conference on Signals, Systems and
Computers (2-Volume Set), ser. ASILOMAR ’95. IEEE Computer Society, 1995, p.
591.

[31] V. Oklobdzija and D. Villeger, “Improving multiplier design by using improved
column compression tree and optimized final adder in cmos technology,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 3, no. 2, pp. 292–
301, 1995.

[32] Y. Kim, S. Kwak, and T. Kim, “Synthesis of adaptable hybrid adders for area
optimization under timing constraint,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 17, no. 4, oct 2012. [Online]. Available: https://doi.org/10.1145/2348839.
2348847

[33] T. Matsunaga and Y. Matsunaga, “Area minimization algorithm for parallel
prefix adders under bitwise delay constraints,” in Proceedings of the 17th ACM
Great Lakes Symposium on VLSI, ser. GLSVLSI ’07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 435–440. [Online]. Available:
https://doi.org/10.1145/1228784.1228886

[34] D.Harris and I. Sutherland, “Logical effort of carry propagate adders,” inTheThrity-
Seventh Asilomar Conference on Signals, Systems and Computers, 2003, vol. 1, 2003,
pp. 873–878 Vol.1.

[35] M. Snir, “Depth-size trade-offs for parallel prefix computation,” J. Algorithms,
vol. 7, no. 2, p. 185–201, jun 1986. [Online]. Available: https://doi.org/10.1016/0196-
6774(86)90003-9

[36] Berkeley Logic Synthesis and Verification Group, “ABC: A System for Sequential
Synthesis and Verification,” https://people.eecs.berkeley.edu/~alanmi/abc/.

[37] Gurobi Optimization, LLC, “GUROBI OPTIMIZER,” https://www.gurobi.com.
[38] Synopsys, Inc., “Design Compiler,” https://www.synopsys.com/implementation-

and-signoff/rtl-synthesis-test/dc-ultra.html.
[39] Nangate Inc., “Open Cell Library v2008_10 SP1,” 2008. [Online]. Available:

http://www.nangate.com/openlibrary/

9

https://doi.org/10.1145/2348839.2348847
https://doi.org/10.1145/2348839.2348847
https://doi.org/10.1145/1228784.1228886
https://doi.org/10.1016/0196-6774(86)90003-9
https://doi.org/10.1016/0196-6774(86)90003-9
https://people.eecs.berkeley.edu/~alanmi/abc/
https://www.gurobi.com
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
http://www.nangate.com/openlibrary/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Multiplier Architecture
	2.2 Prefix Structure-based CPA
	2.3 Fused MAC Architecture

	3 Optimization of Compressor Tree
	3.1 Two Compression Problems
	3.2 CT Structure Generation
	3.3 Compressor Assignment
	3.4 Impact of Interconnection Order
	3.5 Interconnection Order Optimization

	4 Optimization of CPA
	4.1 Non Uniform Arrival Profile of CPA
	4.2 Timing Modeling for Prefix Adders
	4.3 Final Adder Optimization

	5 Experimental Results
	5.1 Setup
	5.2 Multiplier and MAC Comparison
	5.3 Implementation in Functional Modules

	6 Conclusion

